Citation: | KUANG Kaifa, YANG Yuchen, WEN Fangying, CHEN Zheng, HAN Houzeng, WANG Jian. BDS-3 Real-Time Filtered Precise Orbit Determination with Undifferenced Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1223-1231. DOI: 10.13203/j.whugis20230055 |
[1] |
Zumberge J F, Heflin M B, Jefferson D C, et al. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B3): 5005-5017. doi: 10.1029/96JB03860
|
[2] |
曹新运, 沈飞, 李建成, 等. BDS-3/GNSS非组合精密单点定位[J]. 武汉大学学报(信息科学版), 2023, 48(1): 92-100. doi: 10.13203/j.whugis20210198
Cao Xinyun, Shen Fei, Li Jiancheng, et al. BDS-3/GNSS Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 92-100. doi: 10.13203/j.whugis20210198
|
[3] |
Johnston G, Riddell A, Hausler G. The International GNSS Service[M]//Teunissen P J G, Montenbruck O. Springer Handbook of Global Navigation Satellite Systems. Cham: Springer International Publishing, 2017.
|
[4] |
Lou Y D, Dai X L, Gong X P, et al. A Review of Real-Time Multi-GNSS Precise Orbit Determination Based on the Filter Method[J]. Satellite Navigation, 2022, 3(1): 15. doi: 10.1186/s43020-022-00075-1
|
[5] |
Choi K K, Ray J, Griffiths J, et al. Evaluation of GPS Orbit Prediction Strategies for the IGS Ultra-Rapid Products[J]. GPS Solutions, 2013, 17(3): 403-412. doi: 10.1007/s10291-012-0288-2
|
[6] |
Ye F, Yuan Y B, Zhang B C. Impact Analysis of Arc Length in Multi-GNSS Ultra-Rapid Orbit Determination Based on the One-Step Method[J]. Measurement Science and Technology, 2020, 31(5): 055012. doi: 10.1088/1361-6501/ab69d4
|
[7] |
Li X X, Chen X H, Ge M R, et al. Improving Multi-GNSS Ultra-rapid Orbit Determination for Real-Time Precise Point Positioning[J]. Journal of Geodesy, 2019, 93(1): 45-64. doi: 10.1007/s00190-018-1138-y
|
[8] |
Bertiger W, Bar-Sever Y, Dorsey A, et al. GipsyX/RTGX, a New Tool Set for Space Geodetic Operations and Research[J]. Advances in Space Research, 2020, 66(3): 469-489. doi: 10.1016/j.asr.2020.04.015
|
[9] |
Kuang K, Li J, Zhang S, et al. Improve Real-Time GNSS Orbit with Epoch-Independent Undifferenced Ambiguity Resolution[J]. Advances in Space Research, 2021, 68(11): 4544-4555. doi: 10.1016/j.asr.2021.08.021
|
[10] |
Dai X L, Gong X P, Li C L, et al. Real-Time Precise Orbit and Clock Estimation of Multi-GNSS Satellites with Undifferenced Ambiguity Resolution[J]. Journal of Geodesy, 2022, 96(10): 73. doi: 10.1007/s00190-022-01664-3
|
[11] |
Ge M, Gendt G, Dick G, et al. Improving Carrier-Phase Ambiguity Resolution in Global GPS Network Solutions[J]. Journal of Geodesy, 2005, 79(1): 103-110.
|
[12] |
Li Z N, Li M, Shi C, et al. Impact of Ambiguity Resolution with Sequential Constraints on Real-Time Precise GPS Satellite Orbit Determination[J]. GPS Solutions, 2019, 23(3): 85. doi: 10.1007/s10291-019-0878-3
|
[13] |
Ge M, Gendt G, Rothacher M, et al. Resolution of GPS Carrier-Phase Ambiguities in Precise Point Positioning (PPP) with Daily Observations[J]. Journal of Geodesy, 2008, 82(7): 389-399. doi: 10.1007/s00190-007-0187-4
|
[14] |
Laurichesse D, Mercier F, Berthias J P, et al. Integer Ambiguity Resolution on Undifferenced GPS Phase Measurements and Its Application to PPP and Satellite Precise Orbit Determination[J]. Navigation, 2009, 56(2): 135-149. doi: 10.1002/j.2161-4296.2009.tb01750.x
|
[15] |
Collins P, Bisnath S, Lahaye F, et al. Undifferenced GPS Ambiguity Resolution Using the Decoupled Clock Model and Ambiguity Datum Fixing[J]. Navigation, 2010, 57(2): 123-135. doi: 10.1002/j.2161-4296.2010.tb01772.x
|
[16] |
Chen H, Jiang W P, Ge M R, et al. An Enhanced Strategy for GNSS Data Processing of Massive Networks[J]. Journal of Geodesy, 2014, 88(9): 857-867. doi: 10.1007/s00190-014-0727-7
|
[17] |
Ruan R G, Wei Z Q. Between-Satellite Single-Difference Integer Ambiguity Resolution in GPS/GNSS Network Solutions[J]. Journal of Geodesy, 2019, 93(9): 1367-1379. doi: 10.1007/s00190-019-01251-z
|
[18] |
Geng J H, Mao S Y. Massive GNSS Network Analysis Without Baselines: Undifferenced Ambiguity Resolution[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(10): e2020JB021558.
|
[19] |
邓志国, 王君刚, 葛茂荣. GBM快速轨道产品及非差模糊度固定对其精度的改进[J]. 测绘学报, 2022, 51(4): 544-555. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202204007.htm
Deng Zhiguo, Wang Jungang, Ge Maorong. The GBM Rapid Product and the Improvement from Undifferenced Ambiguity Resolution[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 544-555. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202204007.htm
|
[20] |
Geng J H, Meng X L, Dodson A H, et al. Integer Ambiguity Resolution in Precise Point Positioning: Method Comparison[J]. Journal of Geodesy, 2010, 84(9): 569-581. doi: 10.1007/s00190-010-0399-x
|
[21] |
Lannes A, Prieur J L. Calibration of the Clock-phase Biases of GNSS Networks: The Closure-Ambiguity Approach[J]. Journal of Geodesy, 2013, 87(8): 709-731. doi: 10.1007/s00190-013-0641-4
|
[22] |
Dong D N, Bock Y. Global Positioning System Network Analysis with Phase Ambiguity Resolution Applied to Crustal Deformation Studies in California[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B4): 3949-3966. doi: 10.1029/JB094iB04p03949
|
[23] |
Steigenberger P, Deng Z, Guo J, et al. BeiDou-3 Orbit and Clock Quality of the IGS Multi-GNSS Pilot Project[J]. Advances in Space Research, 2023, 71(1): 355-368. doi: 10.1016/j.asr.2022.08.058
|
[24] |
Wang N B, Li Z S, Duan B B, et al. GPS and GLONASS Observable-Specific Code Bias Estimation: Comparison of Solutions from the IGS and MGEX Networks[J]. Journal of Geodesy, 2020, 94(8): 74. doi: 10.1007/s00190-020-01404-5
|
[25] |
Deng Z, Nischan T, Bradke M. Multi-GNSS Rapid Orbit-, Clock- & EOP-Product Series[EB/OL]. (2017-01-01)[2023-03-15]. https://doi.org/10.5880/GFZ.1.1.2017.002.
|
[26] |
Rebischung P, Schmid R. IGS14/igs14. atx: A New Framework for the IGS Products[C]// AGU Fall Meeting, San Francisco, CA, USA, 2016.
|
[27] |
Davis J L, Herring T A, Shapiro I I, et al. Geodesy by Radio Interferometry: Effects of Atmospheric Modeling Errors on Estimates of Baseline Length[J]. Radio Science, 1985, 20(6): 1593-1607. doi: 10.1029/RS020i006p01593
|
[28] |
Böhm J, Möller G, Schindelegger M, et al. Development of an Improved Empirical Model for Slant Delays in the Troposphere (GPT2w)[J]. GPS Solutions, 2015, 19(3): 433-441. doi: 10.1007/s10291-
|
[29] |
Boehm J, Werl B, Schuh H. Troposphere Mapping Functions for GPS and very Long Baseline Interfero‑ metry from European Centre for Medium-range Weather Forecasts Operational Analysis Data[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B2): B02406.
|
[30] |
Petit G, Luzum B. IERS Conventions(2010)(IERS Technical Note No. 36)[EB/OL]. (2019-04-26)[2023-03-15]. http://iers-conventions.obspm.fr/conventions_versions.php#official_target.
|
[31] |
Lyard F, Lefevre F, Letellier T, et al. Modelling the Global Ocean Tides: Modern Insights from FES2004[J]. Ocean Dynamics, 2006, 56(5): 394-415.
|
[32] |
Wu J T, Wu S C, Hajj G A, et al. Effects of Antenna Orientation on GPS Carrier Phase[J]. Manuscripta Geodaetica, 1993, 18: 91-98.
|
[33] |
Pavlis N K, Holmes S A, Kenyon S C, et al. The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008)[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4): B04406.
|
[34] |
Arnold D, Meindl M, Beutler G, et al. CODE's New Solar Radiation Pressure Model for GNSS Orbit Determination[J]. Journal of Geodesy, 2015, 89(8): 775-791.
|
[35] |
阮仁桂, 贾小林, 冯来平, 等. 北斗三号MEO卫星非保守力建模[J]. 测绘学报, 2022, 51(9): 1862-1869. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202209003.htm
Ruan Rengui, Jia Xiaolin, Feng Laiping, et al. Non-conservative Force Modeling of BeiDou-3 MEO Satellite[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(9): 1862-1869. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202209003.htm
|
[1] | GAO Zhuang, HE Xiufeng, CHANG Liang. Accuracy Analysis of GPT3 Model in China[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 538-545. DOI: 10.13203/j.whugis20190202 |
[2] | ZHU Yongxing, TAN Shusen, REN Xia, JIA Xiaolin. Accuracy Analysis of GNSS Global Broadcast Ionospheric Model[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 768-775. DOI: 10.13203/j.whugis20180439 |
[3] | YANG Hui, HU Wusheng, YU Longfei, NIE Xichen, LI Hang. GHop: A New Regional Tropospheric Zenith Delay Model[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 226-232. DOI: 10.13203/j.whugis20180167 |
[4] | HUA Zhonghao, LIU Lintao, LIANG Xinghui. An Assessment of GPT2w Model and Fusion of a Troposphere Model with in Situ Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1468-1473. DOI: 10.13203/j.whugis20150758 |
[5] | WANG Jungang, CHEN Junping, WANG Jiexian, ZHANG Jiejun, SONG Lei. Assessment of Tropospheric Delay Correction Models over China[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1656-1663. DOI: 10.13203/j.whugis20140696 |
[6] | Yao Yibin, Yu Chen, HU Yufeng, Liu Qiang. Using Non-meteorological Parameters Tropospheric Delay Estimation Model for Accelerating Convergence of PPP[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2): 188-192+221. |
[7] | LOU Liangsheng, LIU Siwei, ZHOU Yu. Accuracy Analysis of Airborne InSAR System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 63-67. |
[8] | DAI Wujiao, CHEN Zhaohua, KUANG Cuilin, CAI Changsheng. Modeling Regional Precise Tropospheric Delay[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 392-396. |
[9] | LIU Guolin, HAO Xiaoguang, XUE Huaiping, DU Zhixing. Related Analysis of Effecting Factors of Height Measurement Accuracy of InSAR[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 55-58. |
[10] | LIU Yanxiong, CHEN Yongqi, LIU Jingnan. Determination of Weighted Mean Tropospheric Temperature Using Ground Meteorological Measurement[J]. Geomatics and Information Science of Wuhan University, 2000, 25(5): 400-404. |
1. |
张学波,代勋韬,方标. 多接收阵合成孔径声纳距离-多谱勒成像方法. 武汉大学学报(信息科学版). 2019(11): 1667-1673 .
![]() |