KUANG Kaifa, YANG Yuchen, WEN Fangying, CHEN Zheng, HAN Houzeng, WANG Jian. BDS-3 Real-Time Filtered Precise Orbit Determination with Undifferenced Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1223-1231. DOI: 10.13203/j.whugis20230055
Citation: KUANG Kaifa, YANG Yuchen, WEN Fangying, CHEN Zheng, HAN Houzeng, WANG Jian. BDS-3 Real-Time Filtered Precise Orbit Determination with Undifferenced Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1223-1231. DOI: 10.13203/j.whugis20230055

BDS-3 Real-Time Filtered Precise Orbit Determination with Undifferenced Ambiguity Resolution

More Information
  • Received Date: February 13, 2023
  • Available Online: July 02, 2023
  • Published Date: July 04, 2023
  •   Objectives  Ambiguity resolution is the key for global navigation satellite system(GNSS) high-accuracy data processing. Different from traditional double-difference ambiguity resolution, the undifferenced ambiguity resolution does not need to construct double-difference ambiguity, which is simpler and more efficient.
      Methods  The undifferenced ambiguity resolution is introduced into the BeiDou-3 satellite navigation system(BDS-3)medium Earth orbit satellite real-time filtered orbit determination, and the influence of undifferenced ambiguity resolution on the convergence speed and accuracy of the real-time filtered orbit is analyzed. With observation data from International GNSS Service global network stations, simulated real-time filtered precise orbit determination experiment is conducted with German Research Centre for Geosciences post-processed precise orbit for accuracy assessment.
      Results  The results indicate that while undifferenced ambiguity resolution has little effect on the convergence, it can effectively improve the orbit tangential/normal accuracy; compared with the ambiguity-float orbit, the accuracy of ambiguity-fixed orbit is improved by 1.0%, 18.5%, 19.5% and the error root mean square reaches 6.0, 7.4, 6.2 cm for the radial, tangential, normal directions respectively. Affected by the tangential, normal direction, the orbit accuracy of China Academy of Space Technology type satellites is better than that of Shanghai Engineering Center for Microsatellites type satellites; considering the correlation between narrow lane ambiguity fixed rate and orbit accuracy, narrow lane fixed rate can be used as one of the important indicators of real-time orbit quality.
      Conclusions  Further improvement of real-time filtered orbit relies on the continuous refinement of BDS-3 data processing models.
  • [1]
    Zumberge J F, Heflin M B, Jefferson D C, et al. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B3): 5005-5017. doi: 10.1029/96JB03860
    [2]
    曹新运, 沈飞, 李建成, 等. BDS-3/GNSS非组合精密单点定位[J]. 武汉大学学报(信息科学版), 2023, 48(1): 92-100. doi: 10.13203/j.whugis20210198

    Cao Xinyun, Shen Fei, Li Jiancheng, et al. BDS-3/GNSS Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 92-100. doi: 10.13203/j.whugis20210198
    [3]
    Johnston G, Riddell A, Hausler G. The International GNSS Service[M]//Teunissen P J G, Montenbruck O. Springer Handbook of Global Navigation Satellite Systems. Cham: Springer International Publishing, 2017.
    [4]
    Lou Y D, Dai X L, Gong X P, et al. A Review of Real-Time Multi-GNSS Precise Orbit Determination Based on the Filter Method[J]. Satellite Navigation, 2022, 3(1): 15. doi: 10.1186/s43020-022-00075-1
    [5]
    Choi K K, Ray J, Griffiths J, et al. Evaluation of GPS Orbit Prediction Strategies for the IGS Ultra-Rapid Products[J]. GPS Solutions, 2013, 17(3): 403-412. doi: 10.1007/s10291-012-0288-2
    [6]
    Ye F, Yuan Y B, Zhang B C. Impact Analysis of Arc Length in Multi-GNSS Ultra-Rapid Orbit Determination Based on the One-Step Method[J]. Measurement Science and Technology, 2020, 31(5): 055012. doi: 10.1088/1361-6501/ab69d4
    [7]
    Li X X, Chen X H, Ge M R, et al. Improving Multi-GNSS Ultra-rapid Orbit Determination for Real-Time Precise Point Positioning[J]. Journal of Geodesy, 2019, 93(1): 45-64. doi: 10.1007/s00190-018-1138-y
    [8]
    Bertiger W, Bar-Sever Y, Dorsey A, et al. GipsyX/RTGX, a New Tool Set for Space Geodetic Operations and Research[J]. Advances in Space Research, 2020, 66(3): 469-489. doi: 10.1016/j.asr.2020.04.015
    [9]
    Kuang K, Li J, Zhang S, et al. Improve Real-Time GNSS Orbit with Epoch-Independent Undifferenced Ambiguity Resolution[J]. Advances in Space Research, 2021, 68(11): 4544-4555. doi: 10.1016/j.asr.2021.08.021
    [10]
    Dai X L, Gong X P, Li C L, et al. Real-Time Precise Orbit and Clock Estimation of Multi-GNSS Satellites with Undifferenced Ambiguity Resolution[J]. Journal of Geodesy, 2022, 96(10): 73. doi: 10.1007/s00190-022-01664-3
    [11]
    Ge M, Gendt G, Dick G, et al. Improving Carrier-Phase Ambiguity Resolution in Global GPS Network Solutions[J]. Journal of Geodesy, 2005, 79(1): 103-110.
    [12]
    Li Z N, Li M, Shi C, et al. Impact of Ambiguity Resolution with Sequential Constraints on Real-Time Precise GPS Satellite Orbit Determination[J]. GPS Solutions, 2019, 23(3): 85. doi: 10.1007/s10291-019-0878-3
    [13]
    Ge M, Gendt G, Rothacher M, et al. Resolution of GPS Carrier-Phase Ambiguities in Precise Point Positioning (PPP) with Daily Observations[J]. Journal of Geodesy, 2008, 82(7): 389-399. doi: 10.1007/s00190-007-0187-4
    [14]
    Laurichesse D, Mercier F, Berthias J P, et al. Integer Ambiguity Resolution on Undifferenced GPS Phase Measurements and Its Application to PPP and Satellite Precise Orbit Determination[J]. Navigation, 2009, 56(2): 135-149. doi: 10.1002/j.2161-4296.2009.tb01750.x
    [15]
    Collins P, Bisnath S, Lahaye F, et al. Undifferenced GPS Ambiguity Resolution Using the Decoupled Clock Model and Ambiguity Datum Fixing[J]. Navigation, 2010, 57(2): 123-135. doi: 10.1002/j.2161-4296.2010.tb01772.x
    [16]
    Chen H, Jiang W P, Ge M R, et al. An Enhanced Strategy for GNSS Data Processing of Massive Networks[J]. Journal of Geodesy, 2014, 88(9): 857-867. doi: 10.1007/s00190-014-0727-7
    [17]
    Ruan R G, Wei Z Q. Between-Satellite Single-Difference Integer Ambiguity Resolution in GPS/GNSS Network Solutions[J]. Journal of Geodesy, 2019, 93(9): 1367-1379. doi: 10.1007/s00190-019-01251-z
    [18]
    Geng J H, Mao S Y. Massive GNSS Network Analysis Without Baselines: Undifferenced Ambiguity Resolution[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(10): e2020JB021558.
    [19]
    邓志国, 王君刚, 葛茂荣. GBM快速轨道产品及非差模糊度固定对其精度的改进[J]. 测绘学报, 2022, 51(4): 544-555. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202204007.htm

    Deng Zhiguo, Wang Jungang, Ge Maorong. The GBM Rapid Product and the Improvement from Undifferenced Ambiguity Resolution[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 544-555. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202204007.htm
    [20]
    Geng J H, Meng X L, Dodson A H, et al. Integer Ambiguity Resolution in Precise Point Positioning: Method Comparison[J]. Journal of Geodesy, 2010, 84(9): 569-581. doi: 10.1007/s00190-010-0399-x
    [21]
    Lannes A, Prieur J L. Calibration of the Clock-phase Biases of GNSS Networks: The Closure-Ambiguity Approach[J]. Journal of Geodesy, 2013, 87(8): 709-731. doi: 10.1007/s00190-013-0641-4
    [22]
    Dong D N, Bock Y. Global Positioning System Network Analysis with Phase Ambiguity Resolution Applied to Crustal Deformation Studies in California[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B4): 3949-3966. doi: 10.1029/JB094iB04p03949
    [23]
    Steigenberger P, Deng Z, Guo J, et al. BeiDou-3 Orbit and Clock Quality of the IGS Multi-GNSS Pilot Project[J]. Advances in Space Research, 2023, 71(1): 355-368. doi: 10.1016/j.asr.2022.08.058
    [24]
    Wang N B, Li Z S, Duan B B, et al. GPS and GLONASS Observable-Specific Code Bias Estimation: Comparison of Solutions from the IGS and MGEX Networks[J]. Journal of Geodesy, 2020, 94(8): 74. doi: 10.1007/s00190-020-01404-5
    [25]
    Deng Z, Nischan T, Bradke M. Multi-GNSS Rapid Orbit-, Clock- & EOP-Product Series[EB/OL]. (2017-01-01)[2023-03-15]. https://doi.org/10.5880/GFZ.1.1.2017.002.
    [26]
    Rebischung P, Schmid R. IGS14/igs14. atx: A New Framework for the IGS Products[C]// AGU Fall Meeting, San Francisco, CA, USA, 2016.
    [27]
    Davis J L, Herring T A, Shapiro I I, et al. Geodesy by Radio Interferometry: Effects of Atmospheric Modeling Errors on Estimates of Baseline Length[J]. Radio Science, 1985, 20(6): 1593-1607. doi: 10.1029/RS020i006p01593
    [28]
    Böhm J, Möller G, Schindelegger M, et al. Development of an Improved Empirical Model for Slant Delays in the Troposphere (GPT2w)[J]. GPS Solutions, 2015, 19(3): 433-441. doi: 10.1007/s10291-
    [29]
    Boehm J, Werl B, Schuh H. Troposphere Mapping Functions for GPS and very Long Baseline Interfero‑ metry from European Centre for Medium-range Weather Forecasts Operational Analysis Data[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B2): B02406.
    [30]
    Petit G, Luzum B. IERS Conventions(2010)(IERS Technical Note No. 36)[EB/OL]. (2019-04-26)[2023-03-15]. http://iers-conventions.obspm.fr/conventions_versions.php#official_target.
    [31]
    Lyard F, Lefevre F, Letellier T, et al. Modelling the Global Ocean Tides: Modern Insights from FES2004[J]. Ocean Dynamics, 2006, 56(5): 394-415.
    [32]
    Wu J T, Wu S C, Hajj G A, et al. Effects of Antenna Orientation on GPS Carrier Phase[J]. Manuscripta Geodaetica, 1993, 18: 91-98.
    [33]
    Pavlis N K, Holmes S A, Kenyon S C, et al. The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008)[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4): B04406.
    [34]
    Arnold D, Meindl M, Beutler G, et al. CODE's New Solar Radiation Pressure Model for GNSS Orbit Determination[J]. Journal of Geodesy, 2015, 89(8): 775-791.
    [35]
    阮仁桂, 贾小林, 冯来平, 等. 北斗三号MEO卫星非保守力建模[J]. 测绘学报, 2022, 51(9): 1862-1869. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202209003.htm

    Ruan Rengui, Jia Xiaolin, Feng Laiping, et al. Non-conservative Force Modeling of BeiDou-3 MEO Satellite[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(9): 1862-1869. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202209003.htm
  • Related Articles

    [1]GAO Zhuang, HE Xiufeng, CHANG Liang. Accuracy Analysis of GPT3 Model in China[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 538-545. DOI: 10.13203/j.whugis20190202
    [2]ZHU Yongxing, TAN Shusen, REN Xia, JIA Xiaolin. Accuracy Analysis of GNSS Global Broadcast Ionospheric Model[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 768-775. DOI: 10.13203/j.whugis20180439
    [3]YANG Hui, HU Wusheng, YU Longfei, NIE Xichen, LI Hang. GHop: A New Regional Tropospheric Zenith Delay Model[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 226-232. DOI: 10.13203/j.whugis20180167
    [4]HUA Zhonghao, LIU Lintao, LIANG Xinghui. An Assessment of GPT2w Model and Fusion of a Troposphere Model with in Situ Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1468-1473. DOI: 10.13203/j.whugis20150758
    [5]WANG Jungang, CHEN Junping, WANG Jiexian, ZHANG Jiejun, SONG Lei. Assessment of Tropospheric Delay Correction Models over China[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1656-1663. DOI: 10.13203/j.whugis20140696
    [6]Yao Yibin, Yu Chen, HU Yufeng, Liu Qiang. Using Non-meteorological Parameters Tropospheric Delay Estimation Model for Accelerating Convergence of PPP[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2): 188-192+221.
    [7]LOU Liangsheng, LIU Siwei, ZHOU Yu. Accuracy Analysis of Airborne InSAR System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 63-67.
    [8]DAI Wujiao, CHEN Zhaohua, KUANG Cuilin, CAI Changsheng. Modeling Regional Precise Tropospheric Delay[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 392-396.
    [9]LIU Guolin, HAO Xiaoguang, XUE Huaiping, DU Zhixing. Related Analysis of Effecting Factors of Height Measurement Accuracy of InSAR[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 55-58.
    [10]LIU Yanxiong, CHEN Yongqi, LIU Jingnan. Determination of Weighted Mean Tropospheric Temperature Using Ground Meteorological Measurement[J]. Geomatics and Information Science of Wuhan University, 2000, 25(5): 400-404.
  • Cited by

    Periodical cited type(1)

    1. 张学波,代勋韬,方标. 多接收阵合成孔径声纳距离-多谱勒成像方法. 武汉大学学报(信息科学版). 2019(11): 1667-1673 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return