Citation: | GAO Kuiliang, YU Xuchu, ZHANG Pengqiang, TAN Xiong, LIU Bing. Hyperspectral Image Spatial-Spectral Classification Using Capsule Network Based Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 428-437. DOI: 10.13203/j.whugis20200008 |
[1] |
Chen Y S, Jiang H L, Li C Y, et al. Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232-6251 doi: 10.1109/TGRS.2016.2584107
|
[2] |
Chen Y S, Lin Z H, Zhao X, et al. Deep LearningBased Classification of Hyperspectral Data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2094-2107 doi: 10.1109/JSTARS.2014.2329330
|
[3] |
Tao C, Pan H B, Li Y S, et al. Unsupervised Spectral-Spatial Feature Learning with Stacked Sparse Autoencoder for Hyperspectral Imagery Classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2438-2442 doi: 10.1109/LGRS.2015.2482520
|
[4] |
Li T, Zhang J P, Zhang Y. Classification of Hyperspectral Image Based on Deep Belief Networks[C]// IEEE International Conference on Image Processing, Paris, France, 2014
|
[5] |
Chen Y S, Zhao X, Jia X P. Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 2381-2392 doi: 10.1109/JSTARS.2015.2388577
|
[6] |
Zhang X R, Sun Y J, Jiang K, et al. Spatial Sequential Recurrent Neural Network for Hyperspectral Image Classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4141-4155 doi: 10.1109/JSTARS.2018.2844873
|
[7] |
Liu Bing, Yu Xuchu, Yu Anzhu, et al. Deep Convolutional Recurrent Neural Network with Transfer Learning for Hyperspectral Image Classification[J]. Journal of Applied Remote Sensing, 2018, 12(2): 026028
|
[8] |
Hu W, Huang Y Y, Wei L, et al. Deep Convolutional Neural Networks for Hyperspectral Image Classification[J]. Journal of Sensors, 2015, 2015: 1-12
|
[9] |
Mei S H, Ji J Y, Bi Q Q, et al. Integrating Spectral and Spatial Information into Deep Convolutional Neural Networks for Hyperspectral Classification [C]//IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016
|
[10] |
Li W, Wu G D, Zhang F, et al. Hyperspectral Image Classification Using Deep Pixel-Pair Features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 844-853 doi: 10.1109/TGRS.2016.2616355
|
[11] |
Yue J, Mao S J, Li M. A Deep Learning Framework for Hyperspectral Image Classification Using Spatial Pyramid Pooling[J]. Remote Sensing Letters, 2016, 7(9): 875-884 doi: 10.1080/2150704X.2016.1193793
|
[12] |
Zhang M M, Li W, Du Q. Diverse Region-Based CNN for Hyperspectral Image Classification[J]. IEEE Transactions on Image Processing, 2018, 27 (6): 2623-2634 doi: 10.1109/TIP.2018.2809606
|
[13] |
职露, 余旭初, 邹滨, 等. 多层级二值模式的高光谱影像空-谱分类[J]. 武汉大学学报∙信息科学版, 2019, 44(11): 1659-1666 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201911010.htm
Zhi Lu, Yu Xuchu, Zou Bin, et al. A Multi-Layer Binary Pattern Based Method for Hyperspectral Imagery Classification Using Combined Spatial-Spectral Characteristics[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1659-1666 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201911010.htm
|
[14] |
李竺强, 朱瑞飞, 高放, 等. 三维卷积神经网络模型联合条件随机场优化的高光谱遥感影像分类[J]. 光学学报, 2018, 38(8): 404-413 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201808046.htm
Li Zhuqiang, Zhu Ruifei, Gao Fang, et al. Hyperspectral Remote Sensing Image Classification Based on Three-Dimensional Convolution Neural Network Combined with Conditional Random Field Optimization[J]. Acta Optica Sinica, 2018, 38(8): 404-413 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201808046.htm
|
[15] |
Gao K L, Liu B, Yu X C, et al. Deep Relation Network for Hyperspectral Image Few-Shot Classification[J]. Remote Sensing, 2020, 12(6): 923 doi: 10.3390/rs12060923
|
[16] |
刘冰, 余旭初, 张鹏强, 等. 联合空-谱信息的高光谱影像深度三维卷积网络分类[J]. 测绘学报, 2019, 48(1): 53-63 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201901008.htm
Liu Bing, Yu Xuchu, Zhang Pengqiang, et al. Deep 3D Convolutional Network Combined with SpatialSpectral Features for Hyperspectral Image Classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1): 53-63 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201901008.htm
|
[17] |
Yang J, Zhao Y, Chan J C. Learning and Transferring Deep Joint Spectral-Spatial Features for Hyperspectral Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4729-4742 doi: 10.1109/TGRS.2017.2698503
|
[18] |
Haut J M, Paoletti M E, Plaza J, et al. Active Learning with Convolutional Neural Networks for Hyperspectral Image Classification Using a New Bayesian Approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 64406461 doi: 10.1109/TGRS.2018.2838665
|
[19] |
Wang L G, Hao S Y, Wang Q M, et al. Semi-supervised Classification for Hyperspectral Imagery Based on Spatial-Spectral Label Propagation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 97: 123-137 doi: 10.1016/j.isprsjprs.2014.08.016
|
[20] |
Patrick M K, Adekoya A F, Mighty A A, et al. Capsule Networks: A Survey[J]. Journal of King Saud University-Computer and Information Sciences, 2019
|
[21] |
Liu B, Yu X C, Zhang P Q, et al. Supervised Deep Feature Extraction for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 1909-1921 doi: 10.1109/TGRS.2017.2769673
|
[22] |
Lee H, Kwon H. Going Deeper with Contextual CNN for Hyperspectral Image Classification[J]. IEEE Transactions on Image Processing, 2017, 26 (10): 4843-4855 doi: 10.1109/TIP.2017.2725580
|
[23] |
Gu J X, Wang Z H, Kuen J, et al. Recent Advances in Convolutional Neural Networks[J]. Pattern Recognition, 2018, 77: 354-377 doi: 10.1016/j.patcog.2017.10.013
|
[24] |
Sabour S, Frosst N, Hinton G E. Dynamic Routing Between Capsules[C]//Conference and Workshop on Neural Information Processing Systems, Long Beach, CA, USA, 2017
|
[25] |
Glorot X, Bengio Y. Understanding the Difficulty of Training Deep Feedforward Neural Networks[C]// International Conference on Artificial Intelligence and Statistics, Chia Laguna Resort, Sardinia, Italy, 2010
|
[26] |
Benediktsson J A, Palmason J A, Sveinsson J R. Classification of Hyperspectral Data from Urban Areas Based on Extended Morphological Profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 480-491 doi: 10.1109/TGRS.2004.842478
|
[1] | CAI Xianhua, LIU Kaili, HU Zhuoliang, ZHANG Yuan. An Algorithm for Constructing Road Network Using Block Polygon Topology[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1170-1177. DOI: 10.13203/j.whugis20190348 |
[2] | YANG Wei, AI Tinghua. Extracting Arterial Road Polygon from OpenStreetMap Data Based on Delaunay Triangulation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1725-1731. DOI: 10.13203/j.whugis20160294 |
[3] | ZHANG Hao, WU Fang, GONG Xianyong, XU Junkui, ZHANG Juntao. A Parallel Factor-Based Method of Arterial Two-Lane Roads Recognition[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1123-1130. DOI: 10.13203/j.whugis20150122 |
[4] | WANG Xiao, QIAN Haizhong, LIU Hailong, HE Haiwei, CHEN Jingnan. A Hierarchical and Iterative Road Network Matching Method by Using Road Classification[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1072-1078. DOI: 10.13203/j.whugis20140441 |
[5] | LIU Hailong, QIAN Haizhong, WANG Xiao, HE Haiwei. Road Networks Global Matching Method Using Analytical Hierarchy Process[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 644-651. DOI: 10.13203/j.whugis20130350 |
[6] | LI Fei, LUAN Xuechen, YANG Bisheng, LI Qiuping. Automatic Topology Maintenance Approach for High-level Road Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 729-733. DOI: 10.13203/j.whugis20140115 |
[7] | LUAN Xuechen, YANG Bisheng, ZHANG Yunfei. Structural Hierarchy Analysis of Streets Based on Complex Network Theory[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 728-732. |
[8] | LI Qingquan, ZENG Zhe, YANG Bisheng, LIBijun. Betweenness Centrality Analysis for Urban Road Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 37-41. |
[9] | ZHU Qing, LI Yuan. Review of Road Network Models[J]. Geomatics and Information Science of Wuhan University, 2007, 32(6): 471-476. |
[10] | DENG Hongyan, WU Fang, ZHAI Renjian. A Generalization Model of Road Networks Based on Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2): 164-167. |