Citation: | ZHANG Huifang, ZHANG Penglin, CHAO Jian. Change Detection by Multi-scale Fuzzy Fusion on High Resolution Images[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 296-303. DOI: 10.13203/j.whugis20190425 |
[1] |
史文中, 张鹏林. 光学遥感影像变化检测研究的回顾与展望[J]. 武汉大学学报·信息科学版, 2018, 43 (12): 1832-1837 doi: 10.13203/j.whugis20180419
Shi Wenzhong, Zhang Penglin. State-of-the-Art Remotely Sensed Images-Based Change Detection Methods[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1832-1837 doi: 10.13203/j.whugis20180419
|
[2] |
张倩, 黄昕, 张良培. 多尺度同质区域提取的高分辨率遥感影像分类研究[J]. 武汉大学学报·信息科学版, 2011, 36(1): 117-121 http://ch.whu.edu.cn/article/id/433
Zhang Qian, Huang Xin, Zhang Liangpei. Multiscale Image Segmentation and Classification with Supervised ECHO of High Spatial Resolution Remotely Sensed Imagery[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 117121 http://ch.whu.edu.cn/article/id/433
|
[3] |
李亮, 王蕾, 孙晓鹏, 等. 面向对象变化向量分析的遥感影像变化检测[J]. 遥感信息, 2017, 32(6): 71-77 doi: 10.3969/j.issn.1000-3177.2017.06.012
Li Liang, Wang Lei, Sun Xiaopeng, et al. Remote Sensing Change Detection Method Based on ObjectOriented Change Vector Analysis[J]. Remote Sensing Information, 2017, 32(6): 71-77 doi: 10.3969/j.issn.1000-3177.2017.06.012
|
[4] |
Huang F M, Chen L X, Yin K L, et al. ObjectOriented Change Detection and Damage Assessment Using High-Resolution Remote Sensing Images, Tangjiao Landslide, Three Gorges Reservoir, China [J]. Environmental Earth Sciences, 2018, 77(5): 1-19
|
[5] |
Desclée B, Bogaert P, Defourny P. Forest Change Detection by Statistical Object-Based Method[J]. Remote Sensing of Environment, 2006, 102(1/2): 1-11
|
[6] |
陈苏婷, 王慧. 多尺度多特征融合的高分辨率遥感影像分类[J]. 量子电子学报, 2016, 33(4): 420-426 https://www.cnki.com.cn/Article/CJFDTOTAL-LDXU201604006.htm
Chen Suting, Wang Hui. High Resolution Remote Sensing Image Classification Based on Multi-Scale and Multi-Feature Fusion[J]. Chinese Journal of Quantum Electronics, 2016, 33(4): 420-426 https://www.cnki.com.cn/Article/CJFDTOTAL-LDXU201604006.htm
|
[7] |
刘波, 燕琴, 马磊, 等. 一种结合空间邻域关系特征的面向对象遥感影像变化检测方法[J]. 测绘工程, 2019, 28(1): 57-61 https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC201901012.htm
Liu Bo, Yan Qin, Ma Lei, et al. An Object Oriented Remote Sensing Image Change Detection Method Combined with Spatial Neighborhood Relationships [J]. Engineering of Surveying and Mapping, 2019, 28(1): 57-61 https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC201901012.htm
|
[8] |
霍春雷, 程健, 卢汉清, 等. 基于多尺度融合的对象级变化检测新方法[J]. 自动化学报, 2008, 34(3): 251-257 https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO200803007.htm
Huo Chunlei, Cheng Jian, Lu Hanqing, et al. Object-Level Change Detection Based on Multiscale Fusion[J]. Acta Automatica Sinica, 2008, 34(3): 251-257 https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO200803007.htm
|
[9] |
沈占锋, 骆剑承, 胡晓东, 等. 高分辨率遥感影像多尺度均值漂移分割算法研究[J]. 武汉大学学报·信息科学版, 2010, 35 (3): 313-316 http://ch.whu.edu.cn/article/id/870
Shen Zhanfeng, Luo Jiancheng, Hu Xiaodong, et al. A Mean Shift Multi-Scale Segmentation for High-Resolution Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 313-316 http://ch.whu.edu.cn/article/id/870
|
[10] |
冯文卿, 张永军. 利用模糊综合评判进行面向对象的遥感影像变化检测[J]. 武汉大学学报·信息科学版, 2016, 41(7): 875-881 doi: 10.13203/j.whugis20140291
Feng Wenqing, Zhang Yongjun. Object-Oriented Change Detection for Remote Sensing Images Based on Fuzzy Comprehensive Evaluation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 875-881 doi: 10.13203/j.whugis20140291
|
[11] |
赵敏, 赵银娣. 面向对象的多特征分级CVA遥感影像变化检测[J]. 遥感学报, 2018, 22(1): 119-131 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201801011.htm
Zhao Min, Zhao Yindi. Object-Oriented and MultiFeature Hierarchical Change Detection Based on CVA for High-Resolution Remote Sensing Imagery [J]. Journal of Remote Sensing, 2018, 22(1): 119131 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201801011.htm
|
[12] |
dos Santos J A, Gosselin P H, Philipp-Foliguet S, et al. Interactive Multiscale Classification of HighResolution Remote Sensing Images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(4): 2020-2034 doi: 10.1109/JSTARS.2012.2237013
|
[13] |
Zhang P L, Shi W Z, Wong M, et al. A ReliabilityBased Multi-Algorithm Fusion Technique in Detecting Changes in Land Cover[J]. Remote Sensing, 2013, 5(3): 1134-1151 doi: 10.3390/rs5031134
|
[14] |
王桂婷, 王幼亮, 焦李成. 基于快速EM算法和模糊融合的多波段遥感影像变化检测[J]. 红外与毫米波学报, 2010, 29(5): 383-388 https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201005014.htm
Wang Guiting, Wang Youliang, Jiao Licheng. Change Detection Method of Multiband Remote Sensing Images Based on Fast expectation-Maximization Algorithm and Fuzzy Fusion[J]. Journal of Infrared and Millimeter Waves, 2010, 29(5): 383388 https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201005014.htm
|
[15] |
钟家强, 王润生. 基于二维模糊信息熵的差分图像变化检测[J]. 计算机工程与应用, 2006, 42(14): 60-62 doi: 10.3321/j.issn:1002-8331.2006.14.019
Zhong Jiaqiang, Wang Runsheng. Difference Images Change Detection Based on Two Dimension Fuzzy Entropy[J]. Computer Engineering and Applications, 2006, 42(14): 60-62 doi: 10.3321/j.issn:1002-8331.2006.14.019
|
[16] |
李亮, 舒宁, 李雪. 基于像斑差熵的遥感影像变化检测[J]. 遥感信息, 2011, 26 (4): 38-41 doi: 10.3969/j.issn.1000-3177.2011.04.008
Li Liang, Shu Ning, Li Xue. Remote Sensing Image Change Detection Based on the Entropy Difference of Image Segment[J]. Remote Sensing Information, 2011, 26(4): 38-41 doi: 10.3969/j.issn.1000-3177.2011.04.008
|
[17] |
任晖. 生态环境健康评价及关键参数定量遥感反演方法研究[D]. 北京: 清华大学, 2013
Ren Hui. Study on Ecological Environmental Health Assessment and Quantitative Remote Sensing Inversion Method of Key Parameters[D]. Beijing: Tsinghua University, 2013
|
[18] |
韩鹏, 龚健雅, 李志林. 基于信息熵的遥感分类最优空间尺度选择方法[J]. 武汉大学学报·信息科学版, 2008, 33(7): 676-679 http://ch.whu.edu.cn/article/id/1648
Han Peng, Gong Jianya, Li Zhilin. A New Approach for Choice of Optimal Spatial Scale in Image Classification Based on Entropy[J]. Geomatics and Information Science of Wuhan University, 2008, 33 (7): 676-679 http://ch.whu.edu.cn/article/id/1648
|
[19] |
Bovolo F. A Multilevel Parcel-Based Approach to Change Detection in very High Resolution Multitem poral Images[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(1): 33-37 doi: 10.1109/LGRS.2008.2007429
|
[20] |
Jain A K, Chandrasekaran B. 39 Dimensionality and Sample Size Considerations in Pattern Recognition Practice[J]. Handbook of Statistics, 1982, 2: 835-855
|
[21] |
马长辉, 黄登山. 纹理与几何特征信息在高空间分辨率遥感影像分类中的应用[J]. 测绘地理信息, 2019, 44(6): 66-70 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201906017.htm
Ma Changhui, Huang Dengshan. Application of Texture Features and Geometric Feature Information in High Spatial Resolution Remote Sensing Image Classification[J]. Journal of Geomatics, 2019, 44 (6): 66-70 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201906017.htm
|
[22] |
徐慧, 张鹏林. 遥感影像像元不确定性对SVM分类结果可靠性影响研究[J]. 测绘地理信息, 2021, 46(5): 57-61 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202105012.htm
Xu Hui, Zhang Penglin. Influence of Remote Sensing Image Pixel Uncertainty on SVM Classification Reliability[J]. Journal of Geomatics, 2021, 46(5): 5761 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202105012.htm
|
[23] |
Wu C, Zhang L P, Du B. Kernel Slow Feature Analysis for Scene Change Detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 2367-2384 doi: 10.1109/TGRS.2016.2642125
|
[24] |
Wu C, Zhang L F, Zhang L P. A Scene Change Detection Framework for Multi-Temporal very High Resolution Remote Sensing Images[J]. Signal Processing, 2016, 124: 184-197 doi: 10.1016/j.sigpro.2015.09.020
|
[1] | ZHANG Fan, CHAI Hongzhou, WANG Min, XIAO Guorui, ZHANG Qiankun, DU Zhenqiang. Undifferenced and Uncombined PPP Ambiguity Resolution Combined with GPS/GLONASS Triple-Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1900-1910. DOI: 10.13203/j.whugis20220315 |
[2] | SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030 |
[3] | SONG Weiwei, ZHAO Xinke, LOU Yidong, SUN Weibin, ZHAO Zhengyu. Performance Evaluation of BDS-3 PPP-B2b Service[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 408-415. DOI: 10.13203/j.whugis20200686 |
[4] | YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025 |
[5] | GU Shengfeng, DAI Chunqi, HE Chengpeng, FANG Lizhe, WANG Zihao. Analysis of Semi-tightly Coupled Multi-GNSS PPP-RTK/VIO for Vehicle Navigation in Urban Areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1852-1861. DOI: 10.13203/j.whugis20210615 |
[6] | YAO Yibin, FENG Xinying, PENG Wenjie, LIU Lei. Local Atmosphere Augmentation Based on CORS for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1739-1748. DOI: 10.13203/j.whugis20180131 |
[7] | SONG Chao, HAO Jinming. Instantaneous Re-convergence of Kinematic PPP by the Use of Relationship Between Multiple Receiver Ambiguity[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 595-599, 690. DOI: 10.13203/j.whugis20140747 |
[8] | GUO Fei, ZHANG Xiaohong. Processing Capacity for GPS Data with Clock Slip Using Online PPP Services[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1333-1336. |
[9] | TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. The Research of Dual Frequency Solution Method for Single Frequency Precise Point Positioning(PPP) Based on SEID Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1187-1190. |
[10] | ZHAO Jianhu, WANG Shengping, ZHANG Hongmei, WEN Weidong. Long-Distance and On-the-Fly GPS Tidal Level Measurement Based on GPS PPK/PPP[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 910-913. |