ZHANG Huifang, ZHANG Penglin, CHAO Jian. Change Detection by Multi-scale Fuzzy Fusion on High Resolution Images[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 296-303. DOI: 10.13203/j.whugis20190425
Citation: ZHANG Huifang, ZHANG Penglin, CHAO Jian. Change Detection by Multi-scale Fuzzy Fusion on High Resolution Images[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 296-303. DOI: 10.13203/j.whugis20190425

Change Detection by Multi-scale Fuzzy Fusion on High Resolution Images

Funds: 

The Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resource KF-2019-04-046

More Information
  • Author Bio:

    ZHANG Huifang, master, specializes inreliable change detection and geographic information system. E-mail: rszhf@whu.edu.cn

  • Corresponding author:

    ZHANG Penglin, PhD, professor. E-mail: zpl@whu.edu.cn

  • Received Date: October 11, 2021
  • Published Date: February 04, 2022
  •   Objectives  With the development of remote sensing technology, the spatial resolution of remote sensing image keeps improving, which brings both opportunities and challenges for the traditional remote sensing image classification and change detection.In order to improve the reliability of change detection of high resolution remote sensing image, this paper proposes a method of change detection of remote sensing image based on fuzzy comprehensive evaluation.
      Methods  Firstly, images of two-phases were overlapped to a new image which can be segmented at multi-scale. Secondly, a fuzzy comprehensive evaluation model was established for objects in certain scale to calculate membership of pixels in each object, which took the spectral and texture characteristics of two-phase remote sensing image objects into comprehensive consideration. Finally, the entropy method was used to fuse the fuzzy evaluation membership degree of each pixel in different scales based on information entropy.
      Results  Taking two groups of high resolution images with different phases as examples, we realized the effective fusion of multi-scale change detection based on fuzzy logic, which made full use of multi-level pixel features and consequently improved the overall effect of single scale object-oriented change detection.
      Conclusions  The proposed method provides a new idea for the exploration of multi-scale change detection.
  • [1]
    史文中, 张鹏林. 光学遥感影像变化检测研究的回顾与展望[J]. 武汉大学学报·信息科学版, 2018, 43 (12): 1832-1837 doi: 10.13203/j.whugis20180419

    Shi Wenzhong, Zhang Penglin. State-of-the-Art Remotely Sensed Images-Based Change Detection Methods[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1832-1837 doi: 10.13203/j.whugis20180419
    [2]
    张倩, 黄昕, 张良培. 多尺度同质区域提取的高分辨率遥感影像分类研究[J]. 武汉大学学报·信息科学版, 2011, 36(1): 117-121 http://ch.whu.edu.cn/article/id/433

    Zhang Qian, Huang Xin, Zhang Liangpei. Multiscale Image Segmentation and Classification with Supervised ECHO of High Spatial Resolution Remotely Sensed Imagery[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 117121 http://ch.whu.edu.cn/article/id/433
    [3]
    李亮, 王蕾, 孙晓鹏, 等. 面向对象变化向量分析的遥感影像变化检测[J]. 遥感信息, 2017, 32(6): 71-77 doi: 10.3969/j.issn.1000-3177.2017.06.012

    Li Liang, Wang Lei, Sun Xiaopeng, et al. Remote Sensing Change Detection Method Based on ObjectOriented Change Vector Analysis[J]. Remote Sensing Information, 2017, 32(6): 71-77 doi: 10.3969/j.issn.1000-3177.2017.06.012
    [4]
    Huang F M, Chen L X, Yin K L, et al. ObjectOriented Change Detection and Damage Assessment Using High-Resolution Remote Sensing Images, Tangjiao Landslide, Three Gorges Reservoir, China [J]. Environmental Earth Sciences, 2018, 77(5): 1-19
    [5]
    Desclée B, Bogaert P, Defourny P. Forest Change Detection by Statistical Object-Based Method[J]. Remote Sensing of Environment, 2006, 102(1/2): 1-11
    [6]
    陈苏婷, 王慧. 多尺度多特征融合的高分辨率遥感影像分类[J]. 量子电子学报, 2016, 33(4): 420-426 https://www.cnki.com.cn/Article/CJFDTOTAL-LDXU201604006.htm

    Chen Suting, Wang Hui. High Resolution Remote Sensing Image Classification Based on Multi-Scale and Multi-Feature Fusion[J]. Chinese Journal of Quantum Electronics, 2016, 33(4): 420-426 https://www.cnki.com.cn/Article/CJFDTOTAL-LDXU201604006.htm
    [7]
    刘波, 燕琴, 马磊, 等. 一种结合空间邻域关系特征的面向对象遥感影像变化检测方法[J]. 测绘工程, 2019, 28(1): 57-61 https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC201901012.htm

    Liu Bo, Yan Qin, Ma Lei, et al. An Object Oriented Remote Sensing Image Change Detection Method Combined with Spatial Neighborhood Relationships [J]. Engineering of Surveying and Mapping, 2019, 28(1): 57-61 https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC201901012.htm
    [8]
    霍春雷, 程健, 卢汉清, 等. 基于多尺度融合的对象级变化检测新方法[J]. 自动化学报, 2008, 34(3): 251-257 https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO200803007.htm

    Huo Chunlei, Cheng Jian, Lu Hanqing, et al. Object-Level Change Detection Based on Multiscale Fusion[J]. Acta Automatica Sinica, 2008, 34(3): 251-257 https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO200803007.htm
    [9]
    沈占锋, 骆剑承, 胡晓东, 等. 高分辨率遥感影像多尺度均值漂移分割算法研究[J]. 武汉大学学报·信息科学版, 2010, 35 (3): 313-316 http://ch.whu.edu.cn/article/id/870

    Shen Zhanfeng, Luo Jiancheng, Hu Xiaodong, et al. A Mean Shift Multi-Scale Segmentation for High-Resolution Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 313-316 http://ch.whu.edu.cn/article/id/870
    [10]
    冯文卿, 张永军. 利用模糊综合评判进行面向对象的遥感影像变化检测[J]. 武汉大学学报·信息科学版, 2016, 41(7): 875-881 doi: 10.13203/j.whugis20140291

    Feng Wenqing, Zhang Yongjun. Object-Oriented Change Detection for Remote Sensing Images Based on Fuzzy Comprehensive Evaluation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 875-881 doi: 10.13203/j.whugis20140291
    [11]
    赵敏, 赵银娣. 面向对象的多特征分级CVA遥感影像变化检测[J]. 遥感学报, 2018, 22(1): 119-131 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201801011.htm

    Zhao Min, Zhao Yindi. Object-Oriented and MultiFeature Hierarchical Change Detection Based on CVA for High-Resolution Remote Sensing Imagery [J]. Journal of Remote Sensing, 2018, 22(1): 119131 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201801011.htm
    [12]
    dos Santos J A, Gosselin P H, Philipp-Foliguet S, et al. Interactive Multiscale Classification of HighResolution Remote Sensing Images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(4): 2020-2034 doi: 10.1109/JSTARS.2012.2237013
    [13]
    Zhang P L, Shi W Z, Wong M, et al. A ReliabilityBased Multi-Algorithm Fusion Technique in Detecting Changes in Land Cover[J]. Remote Sensing, 2013, 5(3): 1134-1151 doi: 10.3390/rs5031134
    [14]
    王桂婷, 王幼亮, 焦李成. 基于快速EM算法和模糊融合的多波段遥感影像变化检测[J]. 红外与毫米波学报, 2010, 29(5): 383-388 https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201005014.htm

    Wang Guiting, Wang Youliang, Jiao Licheng. Change Detection Method of Multiband Remote Sensing Images Based on Fast expectation-Maximization Algorithm and Fuzzy Fusion[J]. Journal of Infrared and Millimeter Waves, 2010, 29(5): 383388 https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201005014.htm
    [15]
    钟家强, 王润生. 基于二维模糊信息熵的差分图像变化检测[J]. 计算机工程与应用, 2006, 42(14): 60-62 doi: 10.3321/j.issn:1002-8331.2006.14.019

    Zhong Jiaqiang, Wang Runsheng. Difference Images Change Detection Based on Two Dimension Fuzzy Entropy[J]. Computer Engineering and Applications, 2006, 42(14): 60-62 doi: 10.3321/j.issn:1002-8331.2006.14.019
    [16]
    李亮, 舒宁, 李雪. 基于像斑差熵的遥感影像变化检测[J]. 遥感信息, 2011, 26 (4): 38-41 doi: 10.3969/j.issn.1000-3177.2011.04.008

    Li Liang, Shu Ning, Li Xue. Remote Sensing Image Change Detection Based on the Entropy Difference of Image Segment[J]. Remote Sensing Information, 2011, 26(4): 38-41 doi: 10.3969/j.issn.1000-3177.2011.04.008
    [17]
    任晖. 生态环境健康评价及关键参数定量遥感反演方法研究[D]. 北京: 清华大学, 2013

    Ren Hui. Study on Ecological Environmental Health Assessment and Quantitative Remote Sensing Inversion Method of Key Parameters[D]. Beijing: Tsinghua University, 2013
    [18]
    韩鹏, 龚健雅, 李志林. 基于信息熵的遥感分类最优空间尺度选择方法[J]. 武汉大学学报·信息科学版, 2008, 33(7): 676-679 http://ch.whu.edu.cn/article/id/1648

    Han Peng, Gong Jianya, Li Zhilin. A New Approach for Choice of Optimal Spatial Scale in Image Classification Based on Entropy[J]. Geomatics and Information Science of Wuhan University, 2008, 33 (7): 676-679 http://ch.whu.edu.cn/article/id/1648
    [19]
    Bovolo F. A Multilevel Parcel-Based Approach to Change Detection in very High Resolution Multitem poral Images[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(1): 33-37 doi: 10.1109/LGRS.2008.2007429
    [20]
    Jain A K, Chandrasekaran B. 39 Dimensionality and Sample Size Considerations in Pattern Recognition Practice[J]. Handbook of Statistics, 1982, 2: 835-855
    [21]
    马长辉, 黄登山. 纹理与几何特征信息在高空间分辨率遥感影像分类中的应用[J]. 测绘地理信息, 2019, 44(6): 66-70 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201906017.htm

    Ma Changhui, Huang Dengshan. Application of Texture Features and Geometric Feature Information in High Spatial Resolution Remote Sensing Image Classification[J]. Journal of Geomatics, 2019, 44 (6): 66-70 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201906017.htm
    [22]
    徐慧, 张鹏林. 遥感影像像元不确定性对SVM分类结果可靠性影响研究[J]. 测绘地理信息, 2021, 46(5): 57-61 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202105012.htm

    Xu Hui, Zhang Penglin. Influence of Remote Sensing Image Pixel Uncertainty on SVM Classification Reliability[J]. Journal of Geomatics, 2021, 46(5): 5761 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202105012.htm
    [23]
    Wu C, Zhang L P, Du B. Kernel Slow Feature Analysis for Scene Change Detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 2367-2384 doi: 10.1109/TGRS.2016.2642125
    [24]
    Wu C, Zhang L F, Zhang L P. A Scene Change Detection Framework for Multi-Temporal very High Resolution Remote Sensing Images[J]. Signal Processing, 2016, 124: 184-197 doi: 10.1016/j.sigpro.2015.09.020
  • Related Articles

    [1]ZHANG Fan, CHAI Hongzhou, WANG Min, XIAO Guorui, ZHANG Qiankun, DU Zhenqiang. Undifferenced and Uncombined PPP Ambiguity Resolution Combined with GPS/GLONASS Triple-Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1900-1910. DOI: 10.13203/j.whugis20220315
    [2]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [3]SONG Weiwei, ZHAO Xinke, LOU Yidong, SUN Weibin, ZHAO Zhengyu. Performance Evaluation of BDS-3 PPP-B2b Service[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 408-415. DOI: 10.13203/j.whugis20200686
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]GU Shengfeng, DAI Chunqi, HE Chengpeng, FANG Lizhe, WANG Zihao. Analysis of Semi-tightly Coupled Multi-GNSS PPP-RTK/VIO for Vehicle Navigation in Urban Areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1852-1861. DOI: 10.13203/j.whugis20210615
    [6]YAO Yibin, FENG Xinying, PENG Wenjie, LIU Lei. Local Atmosphere Augmentation Based on CORS for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1739-1748. DOI: 10.13203/j.whugis20180131
    [7]SONG Chao, HAO Jinming. Instantaneous Re-convergence of Kinematic PPP by the Use of Relationship Between Multiple Receiver Ambiguity[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 595-599, 690. DOI: 10.13203/j.whugis20140747
    [8]GUO Fei, ZHANG Xiaohong. Processing Capacity for GPS Data with Clock Slip Using Online PPP Services[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1333-1336.
    [9]TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. The Research of Dual Frequency Solution Method for Single Frequency Precise Point Positioning(PPP) Based on SEID Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1187-1190.
    [10]ZHAO Jianhu, WANG Shengping, ZHANG Hongmei, WEN Weidong. Long-Distance and On-the-Fly GPS Tidal Level Measurement Based on GPS PPK/PPP[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 910-913.
  • Cited by

    Periodical cited type(13)

    1. 冯晓亮,陈欢,李厚芝. 不同观测环境中的多模GNSS数据质量自动化检测方法. 测绘工程. 2024(06): 56-61 .
    2. 刘嘉伟,孙保琪,韩蕊,张喆,王侃,袁海波,杨旭海. GNSS多系统RTK授时性能分析. 导航定位与授时. 2023(03): 49-58 .
    3. 王浩浩,郝明,庄文泉. GNSS实时卫星钟差估计在地震监测中的应用. 导航定位与授时. 2023(03): 108-116 .
    4. 周长江,余海锋,王林伟,雷云平,岳彩亚. 无频间钟偏差改正的BDS-2三频非组合PPP随机模型优化. 测绘通报. 2023(12): 164-168 .
    5. 潘丽静,刘翔,夏川茹,王雷雷. GNSS精密卫星钟差实时估计与分析. 城市勘测. 2021(06): 73-76 .
    6. 郭磊,王甫红,桑吉章,张万威. 一种新的利用历元间位置变化量约束的GNSS导航算法. 武汉大学学报(信息科学版). 2020(01): 21-27 .
    7. 陶钧,张柔. GPS/BeiDou/Galileo/GLONASS实时精密卫星钟差估计. 测绘地理信息. 2020(03): 102-106 .
    8. 黄观文,王浩浩,谢威,曹钰. GNSS实时卫星钟差估计技术进展. 导航定位与授时. 2020(05): 1-9 .
    9. 张浩,赵兴旺,陈佩文,谢毅. GPS/BDS卫星钟差融合解算模型及精度分析. 合肥工业大学学报(自然科学版). 2020(09): 1192-1196 .
    10. 叶珍,李浩军. GNSS卫星钟差估计与结果分析. 导航定位与授时. 2019(03): 88-94 .
    11. 盛剑锋,张彩红,谭凯. 一种全球导航卫星系统钟差估计优化方案的量化研究. 科学技术与工程. 2019(14): 14-21 .
    12. 王尔申,赵珩,曲萍萍,庞涛,孙军. 基于拉格朗日插值法的卫星导航空间信号精度评估算法. 沈阳航空航天大学学报. 2019(04): 43-48 .
    13. 李云,崔文刚. 精密单点定位技术发展及应用. 科学技术与工程. 2019(27): 1-11 .

    Other cited types(10)

Catalog

    Article views PDF downloads Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return