YAO Yibin, FENG Xinying, PENG Wenjie, LIU Lei. Local Atmosphere Augmentation Based on CORS for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1739-1748. DOI: 10.13203/j.whugis20180131
Citation: YAO Yibin, FENG Xinying, PENG Wenjie, LIU Lei. Local Atmosphere Augmentation Based on CORS for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1739-1748. DOI: 10.13203/j.whugis20180131

Local Atmosphere Augmentation Based on CORS for Real-Time PPP

Funds: 

The National Natural Science Foundation of China 41574028

More Information
  • Author Bio:

    YAO Yibin, PhD, professor. His research interests are about the GNSS ionosphere, GNSS tropospheric water vapor and GNSS data processing algorithms. E-mail:ybyao@whu.edu.cn

  • Corresponding author:

    FENG Xinying, master. E-mail: fengxy@whu.edu.cn

  • Received Date: December 15, 2018
  • Published Date: December 04, 2019
  • Real-time precise point positioning (PPP) is mainly limited by the initialization speed. This paper utilizes different local atmosphere augmentation products based on continuously operating reference system (CORS) to improve the convergence time of uncombined PPP, and studies the effects of different atmosphere products on PPP float solution, and then assesses their accuracy and validity of them. The results of the real-time PPP experiments show that, comparing with the traditional PPP, ionosphere products improve PPP convergence time on E (East)-direction significantly, N (North)-direction moderately and U (Up)-direction finitely. Besides, the local PPP ionosphere products based on traditional uncombined PPP (helping improvce 85%, 61%, 18% respectively) are superior to the local smooth ionosphere products based on the geometry-free carrier-phase smoothing code pseudorange method. On the other hand, troposphere products can largely improve U-direction convergence time of PPP by 52%. Moreover, the local PPP ionosphere products and local troposphere products combined PPP has better performance than the single product or other combined products constrained PPP, which improves, the E, N, U directions by 85%, 63%, 69% respectively.
  • [1]
    易重海.实时精密单点定位理论与应用研究[D].长沙: 中南大学, 2011 http://cdmd.cnki.com.cn/Article/CDMD-10533-1011177780.htm

    Yi Chonghai. Research on Theory and Application of Real Time Precise Point Positioning[D]. Changsha: Central South University, 2011 http://cdmd.cnki.com.cn/Article/CDMD-10533-1011177780.htm
    [2]
    耿涛, 赵齐乐, 刘经南, 等.基于PANDA软件的实时精密单点定位研究[J].武汉大学学报·信息科学版, 2007, 32(4):312-315 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb200704009

    Geng Tao, Zhao Qile, Liu Jingnan, et al. Real Time Precise Point Positioning Based on PANDA Software[J]. Geomatics and Information Science of Wuhan University, 2007, 32(4):312-315 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb200704009
    [3]
    Geng J, Teferle F N, Meng X, et al. Towards PPP-RTK: Ambiguity Resolution in Real-Time Precise Point Positioning[J]. Advances in Space Research, 2011, 47(10):1 664-1 673 doi: 10.1016/j.asr.2010.03.030
    [4]
    邹璇, 李宗楠, 唐卫明, 等.一种适用于大规模用户的非差网络RTK服务新方法[J].武汉大学学报·信息科学版, 2015, 40(9): 1 242-1 246 http://html.rhhz.net/WHDXXBXXKXB/html/2015-9-1242.htm

    Zou Xuan, Li Zongnan, Tang Weiming, et al. A New Undifferenced Network RTK Scheme for Massive Users[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1 242-1 246 http://html.rhhz.net/WHDXXBXXKXB/html/2015-9-1242.htm
    [5]
    姚宜斌, 彭文飞, 孔建, 等.精密单点定位模糊度固定效果分析[J].武汉大学学报·信息科学版, 2013, 38(11): 1 281-1 285 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201311005

    Yao Yibin, Peng Wenfei, Kong Jian, et al. Analysis of Ambiguity in Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2013, 38(11): 1 281-1 285 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201311005
    [6]
    Teunissen P J G, Odijk D, Zhang B. PPP-RTK: Results of CORS Network-Based PPP with Integer Ambiguity Resolution[J]. Journal of Aeronautics, Astronautics and Aviation, Series A, 2010, 42(4):223-230 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0224998530/
    [7]
    Li X, Zhang X, Ge M. Regional Reference Network Augmented Precise Point Positioning for Instantaneous Ambiguity Resolution[J]. Journal of Geodesy, 2011, 85(3):151-158 doi: 10.1007/s00190-010-0424-0
    [8]
    聂文锋, 胡伍生, 潘树国, 等.利用GPS双频数据进行区域电离层TEC提取[J].武汉大学学报·信息科学版, 2014, 39(9): 1 022-1 027 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201409003

    Nie Wenfeng, Hu Wusheng, Pan Shuguo, et al. Extraction of Regional Ionospheric TEC from GPS Dual Observation[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1 022-1 027 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201409003
    [9]
    Brunini C, Javier A F. Accuracy Assessment of the GPS-Based Slant Total Electron Content[J]. Journal of Geodesy, 2009, 83(8):773-785 doi: 10.1007/s00190-008-0296-8
    [10]
    张宝成, 欧吉坤, 袁运斌, 等.利用非组合精密单点定位技术确定斜向电离层总电子含量和站星差分码偏差[J].测绘学报, 2011, 40(4):447-453 http://www.cnki.com.cn/Article/CJFDTotal-CHXB201104010.htm

    Zhang Baocheng, Ou Jikun, Yuan Yunbin, et al. Calibration of Slant Total Electron Content and Satellite-Receiver's Differential Code Biases with Uncombined Precise Point Positioning Technique[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(4):447-453 http://www.cnki.com.cn/Article/CJFDTotal-CHXB201104010.htm
    [11]
    张瑞, 宋伟伟, 朱爽.地基GPS遥感天顶水汽含量方法研究[J].武汉大学学报·信息科学版, 2010, 35(6): 691-693 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201006015

    Zhang Rui, Song Weiwei, Zhu Shuang. Remotely Sensing Atmosphere Water Vapor with Ground-Based GPS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 691-693 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201006015
    [12]
    叶世榕, 张双成, 刘经南.精密单点定位方法估计对流层延迟精度分析[J].武汉大学学报·信息科学版, 2008, 33(8):788-791 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb200808005

    Ye Shirong, Zhang Shuangcheng, Liu Jingnan. Precision Analysis of Precise Point Positioning Based Tropospheric Delay Estimation[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8):788-791 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb200808005
    [13]
    Shoji Y. A Study of Near Real-Time Water Vapor Analysis Using a Nationwide Dense GPS Network of Japan[J]. Journal of the Meteorological Society of Japan, 2009, 87(1):1-18 doi: 10.2151/jmsj.87.1
    [14]
    Dai L. Augmentation of GPS with GLONASS and Pseudolite Signals for Carrier Phase-Based Kinematic Positioning[D]. Sydney: The University of New South Wales, 2002
    [15]
    章红平, 高周正, 牛小骥, 等. GPS非差非组合精密单点定位算法研究[J].武汉大学学报·信息科学版, 2013, 38(12): 1 396-1 399 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201312003

    Zhang Hongping, Gao Zhouzheng, Niu Xiaoji, et al. Research on GPS Precise Point Positioning with Un-differential and Un-combined Observations[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1 396-1 399 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201312003
    [16]
    姚宜斌, 余琛, 胡羽丰, 等.利用非气象参数对流层延迟估计模型加速PPP收敛[J].武汉大学学报·信息科学版, 2015, 40(2): 188-192, 221 http://html.rhhz.net/WHDXXBXXKXB/html/2015-2-188.htm

    Yao Yibin, Yu Chen, Hu Yufeng, et al. Using Non-meteorological Parameters Tropospheric Delay Estimation Model for Accelerating Convergence of PPP[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2): 188-192, 221 http://html.rhhz.net/WHDXXBXXKXB/html/2015-2-188.htm
    [17]
    Yao Y, Yu C, Hu Y. A New Method to Accelerate PPP Convergence Time by Using a Global Zenith Troposphere Delay Estimate Model[J]. Journal of Navigation, 2014, 67(5):899-910 doi: 10.1017/S0373463314000265
    [18]
    Yao Y, Peng W, Xu C, et al. Enhancing Real-Time Precise Point Positioning with Zenith Troposphere Delay Products and the Determination of Corresponding Tropospheric Stochastic Models[J]. Geophysical Journal International, 2017, 208(2):1 217-1 230 doi: 10.1093/gji/ggw451
    [19]
    Elsobeiey M, Al-Harbi S. Performance of Real-Time Precise Point Positioning Using IGS Real-Time Service[J]. GPS Solutions, 2016, 20(3):565-571 doi: 10.1007/s10291-015-0467-z
    [20]
    Schueler T. The TropGrid2 Standard Tropospheric Correction Model[J]. GPS Solutions, 2014, 18(1): 123-131 doi: 10.1007/s10291-013-0316-x
    [21]
    Blewitt G. Carrier Phase Ambiguity Resolution for the Global Positioning System Applied to Geodetic Baselines up to 2 000 km[J]. Journal of Geophysical Research: Solid Earth and Planets, 1989, 94(B8):10 187-10 203 doi: 10.1029/JB094iB08p10187
    [22]
    Ge M, Gendt G, Rothacher M, et al. Resolution of GPS Carrier-phase Ambiguities in Precise Point Positioning (PPP) with Daily Observations[J]. Journal of Geodesy, 2008, 82(7):389-399 doi: 10.1007/s00190-007-0187-4
  • Related Articles

    [1]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [2]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [3]ZHAO Qile, TAO Jun, GUO Jing, CHEN Guo, XU Xiaolong, ZHANG Qiang, ZHANG Gaojian, XU Shengyi, LI Junqiang. Wide-Area Instantaneous cm-Level Precise Point Positioning: Method and Service System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1058-1069. DOI: 10.13203/j.whugis20230202
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [6]ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078
    [7]ZHANG Xiaohong, CAI Shixiang, LI Xingxing, GUO Fei. Accuracy Analysis of Time and Frequency Transfer Based on Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 274-278.
    [8]ZHANG Xiaohong, GUO Fei, LI Xingxing, LIN Xiaojing. Study on Precise Point Positioning Based on Combined GPS and GLONASS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 9-12.
    [9]FU Jianhong, YUAN Xiuxiao. Influence of GPS Base Station on Accuracy of Positioning by Airborne Position and Orientation System[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 398-401.
    [10]Huang Shengxiang, Zhang Yan. Estimation of Accuracy Indicators for GPS Relative Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 47-50.
  • Cited by

    Periodical cited type(22)

    1. 肖斌宸,叶飞,叶险峰,曾翔强. 电离层和地形复杂区域北斗/GNSS实时PPP性能及大气分析. 数据与计算发展前沿(中英文). 2025(01): 108-118 .
    2. 侯诚,史俊波,苟劲松,郭际明,邹进贵. 多路径误差对BDS-3变形监测精度的影响. 大地测量与地球动力学. 2024(02): 128-133 .
    3. 邓陈喜,姜维,王剑,蔡伯根. 基于北斗3号PPP-B2b信号的实时精密单点定位方法研究. 铁道学报. 2024(02): 63-73 .
    4. 于合理,孙晓东,贾赞杰,武智佳,代桃高. 限制环境下的GNSS精密授时方法研究综述. 海洋测绘. 2024(02): 46-50 .
    5. 许扬胤,任夏,明锋. 北斗三号PPP-B2b信号精密单点定位服务可用性分析. 全球定位系统. 2024(03): 10-19 .
    6. 肖恭伟,卞逸驰,何在民,广伟,尹翔飞,张润芝. 北斗三号PPP-B2b差分码偏差对UPPP解算的影响. 西安邮电大学学报. 2024(02): 1-10 .
    7. 宋伟伟,宋啟晟,何倩倩,龚晓鹏,辜声峰. 高精度电离层产品增强PPP-B2b定位性能分析. 武汉大学学报(信息科学版). 2024(09): 1517-1526 .
    8. 索世恒,韩昆,张永峰. 伽利略高精度服务产品与其全球定位性能评估. 地理空间信息. 2024(11): 100-104+121 .
    9. 孙爽,王敏,刘长建,孟欣,季锐. PPP-B2b服务钟差常数偏差特性及对定位的影响分析. 测绘科学. 2023(01): 8-15 .
    10. 郭文飞,朱萌萌,辜声峰,左鸿铭,陈金鑫. GNSS精密时频接收机时钟调控模型与参数设计方法. 武汉大学学报(信息科学版). 2023(07): 1126-1133 .
    11. 唐守普,吴文坛,夏振营,史进志,赵婉清,莫雁寒. 北斗三号PPP-B2b独立定位分析与应用. 河北省科学院学报. 2023(03): 61-69 .
    12. 赵淑洁,赵当丽,黄媛媛,纪元法. 基于PPP-B2b改正产品的北斗实时精密星历精度分析. 时间频率学报. 2023(02): 141-149 .
    13. 张润芝,何在民,马红皎,武建锋,广伟,肖恭伟. 北斗三号PPP-B2b信号跟踪环路的极点分布法设计. 时间频率学报. 2023(02): 161-169 .
    14. 姚夏,李志敏,吴如楠,毛飞宇,龚晓鹏. 北斗三号PPP-B2b信号时间同步性能分析. 导航定位学报. 2023(04): 84-89 .
    15. 史俊波,董新莹,欧阳晨皓,彭文杰,姚宜斌. 基于北斗三号PPP服务的快速静态和低动态定位性能分析. 大地测量与地球动力学. 2023(10): 997-1002 .
    16. 韩晓红,孙保琪,张喆,周红源,杨海彦,赵当丽,杨旭海. 基于北斗三号PPP-B2b轨道的实时精密共视时间传递. 导航定位与授时. 2023(04): 103-111 .
    17. 肖鹏,孙付平,张伦东,肖凯,商向永. 北斗三号PPP-B2b服务实时动态定位性能分析. 导航定位学报. 2023(05): 21-28 .
    18. 刘杨,曾安敏,郑翠娥,江鹏,刘焱雄. 广播式远程精密水下导航定位技术. 哈尔滨工程大学学报. 2023(11): 1987-1995 .
    19. 王林伟,周长江,余海锋,岳彩亚. 全球精密单点定位性能评估. 导航定位与授时. 2023(06): 86-92 .
    20. 赵泉涌,潘树国,缪巍巍,沈超,高旺,赵庆. PPP-B2b常数偏差实时改正后的多频单历元定位. 测绘科学. 2023(11): 61-68 .
    21. 彭松,刘建坤,张云龙,常丹,孙兆辉. 基于北斗三号远程监测系统的公路岩质边坡开挖变形分析. 科学技术与工程. 2022(33): 14898-14906 .
    22. 余德荧,金际航,刘一,边少锋. 基于北斗三号PPP-B2b信号的海上精密定位试验分析. 海洋测绘. 2022(06): 51-55+64 .

    Other cited types(9)

Catalog

    Article views (1237) PDF downloads (304) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return