Citation: | SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030 |
The BeiDou-3 satellite navigation system (BDS-3) can provide real-time precise point positioning (PPP) services to China and neighboring regions through PPP-B2b signals. Because PPP-B2b signals do not contain ionospheric model products, the current positioning research mainly adopts ionospheric-free combination. The positioning accuracy can reach decimeter level, but requires about 30 min of convergence time. In this paper, aiming at the long convergence time of PPP-B2b positioning, the improvement of positioning convergence performance based on ionospheric model products is analyzed.
Quasi-4-dimensional ionospheric modeling is introduced into regional ionospheric delay modeling in China and four schemes of 50,100,150 and 200 reference stations uniformly distributed in China (day of year 201—207) are adopted for ionospheric modeling.
The results show that when the number of stations used in ionospheric modeling increases from 50 to 200, the accuracy of ionospheric model products increases from 2-3 TECU to better than 0.8 TECU. Compared with the current ionospheric-free combined PPP, the convergence time of BDS-3 dynamic PPP can be deceased by 77%. In addition, the convergence time of GPS+BDS-3 dynamic PPP is reduced from 13.51 min to 4.45 min.
High-precision ionospheric model products can significantly shorten the convergence time of PPP-B2b.
[1] |
Zumberge J F, Heflin M B, Jefferson D C, et al. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B3): 5005-5017.
|
[2] |
中国卫星导航系统管理办公室.北斗卫星导航系统发展报告(4.0版)[EB/OL].[2019-12-27]. http://www.beidou.gov.cn/yw/xwzx/201912/t20191227_19833.html.
China Satellite Navigation Office. Development of the BeiDou Navigation Satellite System(Version 4.0)[EB/OL].[2019-12-27]. http://www.beidou.gov.cn/yw/xwzx/201912/t20191227_19833.html.
|
[3] |
中国卫星导航系统管理办公室.北斗卫星导航系统空间信号接口控制文件精密单点定位服务信号PPP-B2b(1.0版)[DB/OL].[2019-12]. http://www.beidou.gov.cn/xt/gfxz/201912/P020191227330700017853.pdf.
China Satellite Navigation Office. BeiDou Navigation Satellite System Signal in Space Interface Control Document Precise Point Positioning Service Signal PPP-B2b(Version 1.0)[DB/OL].[2019-12]. http://www.beidou.gov.cn/xt/gfxz/201912/P020191227330700017853.pdf.
|
[4] |
Liu C, Gao W G, Liu T X, et al. Design and Implementation of a BDS Precise Point Positioning Service[J]. Navigation, 2020, 67(4): 875-891.
|
[5] |
Tang C P, Hu X G, Chen J P, et al. Orbit Determination, Clock Estimation and Performance Evaluation of BDS-3 PPP-B2b Service[J]. Journal of Geodesy, 2022, 96(9): 60.
|
[6] |
Xu Y Y, Yang Y X, Li J L. Performance Evaluation of BDS-3 PPP-B2b Precise Point Positioning Service[J]. GPS Solutions, 2021, 25(4): 142.
|
[7] |
宋伟伟, 赵新科, 楼益栋, 等. 北斗三号PPP-B2b服务性能评估[J]. 武汉大学学报(信息科学版), 2023, 48(3): 408-415.
Song Weiwei, Zhao Xinke, Lou Yidong, et al. Performance Evaluation of BDS-3 PPP-B2b Service[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 408-415.
|
[8] |
Liu Y, Yang C, Zhang M N. Comprehensive Analyses of PPP-B2b Performance in China and Surrounding Areas[J]. Remote Sensing, 2022, 14(3): 643.
|
[9] |
Zhang W X, Lou Y D, Song W W, et al. Initial Assessment of BDS-3 Precise Point Positioning Service on GEO B2b Signal[J]. Advances in Space Research, 2022, 69(1): 690-700.
|
[10] |
Ren Z L,Gong H,Peng J,et al. Performance Assessment of Real-Time Precise Point Positioning Using BDS PPP-B2b Service Signal[J]. Advances in Space Research, 2021, 68(8): 3242-3254.
|
[11] |
Tao J, Liu J N, Hu Z G, et al. Initial Assessment of the BDS-3 PPP-B2b RTS Compared with the CNES RTS[J]. GPS Solutions, 2021, 25(4): 131.
|
[12] |
蔡洪亮, 孟轶男, 耿长江, 等. 北斗三号全球导航卫星系统服务性能评估:定位导航授时、星基增强、精密单点定位、短报文通信与国际搜救[J]. 测绘学报, 2021, 50(4): 427-435.
Cai Hongliang, Meng Yinan, Geng Changjiang, et al. BDS-3 Performance Assessment: PNT, SBAS, PPP, SMC and SAR[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 427-435.
|
[13] |
丁文武, 欧吉坤, 李子申, 等. 附加电离层延迟约束的实时动态PPP快速重新初始化方法[J]. 地球物理学报, 2014, 57(6): 1720-1731.
Ding Wenwu, Jikun Ou, Li Zishen, et al. Instantaneous Re-initialization Method of Real Time Kinematic PPP by Adding Ionospheric Delay Constraints[J]. Chinese Journal of Geophysics, 2014, 57(6): 1720-1731.
|
[14] |
Shi C, Gu S F, Lou Y D, et al. An Improved Approach to Model Ionospheric Delays for Single-Frequency Precise Point Positioning[J]. Advances in Space Research, 2012, 49(12): 1698-1708.
|
[15] |
姚宜斌, 冯鑫滢, 彭文杰, 等. 基于CORS的区域大气增强产品对实时PPP的影响[J]. 武汉大学学报(信息科学版), 2019, 44(12): 1739-1748.
Yao Yibin, Feng Xinying, Peng Wenjie, et al. Local Atmosphere Augmentation Based on CORS for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1739-1748.
|
[16] |
宋伟伟, 何成鹏, 辜声峰. 不同纬度区域电离层增强PPP-RTK性能分析[J]. 武汉大学学报(信息科学版), 2021, 46(12): 1832-1842.
Song Weiwei, He Chengpeng, Gu Shengfeng. Performance Analysis of Ionospheric Enhanced PPP-RTK in Different Latitudes[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1832-1842.
|
[17] |
Gu S F, Gan C K, He C P, et al. Quasi-4-Dimension Ionospheric Modeling and Its Application in PPP[J]. Satellite Navigation, 2022, 3(1): 24.
|
[18] |
Zhao Q L, Wang Y T, Gu S F, et al. Refining Ionospheric Delay Modeling for Undifferenced and Uncombined GNSS Data Processing[J]. Journal of Geodesy, 2019, 93(4): 545-560.
|
[19] |
Gu S F, Shi C, Lou Y D, et al. Ionospheric Effects in Uncalibrated Phase Delay Estimation and Ambiguity-Fixed PPP Based on Raw Observable Model[J]. Journal of Geodesy, 2015, 89(5): 447-457.
|
[20] |
Lou Y D, Dai X L, Gong X P, et al. A Review of Real-Time Multi-GNSS Precise Orbit Determination Based on the Filter Method[J]. Satellite Navigation, 2022, 3(1): 15.
|
[21] |
Gong X P, Gu S F, Lou Y D, et al. An Efficient Solution of Real-Time Data Processing for Multi-GNSS Network[J]. Journal of Geodesy, 2018, 92(7): 797-809.
|
[22] |
Gu S F, Dai C Q, Fang W T, et al. Multi-GNSS PPP/INS Tightly Coupled Integration with Atmospheric Augmentation and Its Application in Urban Vehicle Navigation[J]. Journal of Geodesy, 2021, 95(6): 64.
|
[23] |
Lou Y D, Zhang Z, Gong X P, et al. Estimating GPS Satellite and Receiver Differential Code Bias Based on Signal Distortion Bias Calibration[J]. GPS Solutions, 2023, 27(1): 48.
|
[24] |
张小红, 胡家欢, 任晓东. PPP/PPP-RTK新进展与北斗/GNSS PPP定位性能比较[J]. 测绘学报, 2020, 49(9): 1084-1100.
Zhang Xiaohong, Hu Jiahuan, Ren Xiaodong. New Progress of PPP/PPP-RTK and Positioning Performance Comparison of BDS/GNSS PPP[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1084-1100.
|
[1] | YANG Jiuyuan, WEN Yangmao, XU Caijun. Seismogenic Fault Structure of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 313-321. DOI: 10.13203/j.whugis20230501 |
[2] | LIU Bin, ZHANG Li, GE Daqing, LI Man, ZHOU Xiaolong, GUO Zhaocheng, SHI Pengqing, ZHANG Ling, JIN Dingjian, WAN Xiangxing, WANG Yu, WANG Yan. Application of InSAR Monitoring Large Deformation of Landslides Using Lutan-1 Constellation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1753-1762. DOI: 10.13203/j.whugis20230478 |
[3] | YANG Jiuyuan, WEN Yangmao, XU Caijun. Coseismic Rupture Behavior of the 2024 Nima (Tibet) MW 6.0 Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240243 |
[4] | MAO Hongfei, XIE Lei, JIANG Kun, SUN Kai, WANG Jiageng, XU Wenbin. Source Parameter Inversion of Moderate to Strong Earthquakes and Its Comparison with Earthquake Catalogs in Tibetan Plateau based on InSAR Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240124 |
[5] | XU Qiang, LU Huiyan, LI Weile, DONG Xiujun, GUO Chen. Types of Potential Landslide and Corresponding Identification Technologies[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 377-387. DOI: 10.13203/j.whugis20210618 |
[6] | LIU Bin, GE Daqing, WANG Shanshan, LI Man, ZHANG Ling, WANG Yan, WU Qiong. Combining Application of TOPS and ScanSAR InSAR in Large-Scale Geohazards Identification[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1756-1762. DOI: 10.13203/j.whugis20200259 |
[7] | LIU Yang, XU Caijun, WEN Yangmao. InSAR Observation of Menyuan Mw5.9 Earthquake Deformation and Deep Geometry of Regional Fault Zone[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1035-1042. DOI: 10.13203/j.whugis20190069 |
[8] | CAO Haikun, ZHAO Lihua, ZHANG Qin, QU Wei, NIE Jianliang. Ascending and Descending Orbits InSAR-GPS Data Fusion Method with Additional Systematic Parameters for Three-Dimensional Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1362-1368. DOI: 10.13203/j.whugis20160461 |
[9] | Yue Xijuan, Han Chunming, Dou Changyong, Zhao Yinghui. Mathematical Model of Airborne InSAR Block Adjustment[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 59-63. |
[10] | WU Yunsun, LI Zhenhong, LIU Jingnan, XU Caijun. Atmospheric Correction Models for InSAR Measurements[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 862-867. |