Citation: | SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030 |
The BeiDou-3 satellite navigation system (BDS-3) can provide real-time precise point positioning (PPP) services to China and neighboring regions through PPP-B2b signals. Because PPP-B2b signals do not contain ionospheric model products, the current positioning research mainly adopts ionospheric-free combination. The positioning accuracy can reach decimeter level, but requires about 30 min of convergence time. In this paper, aiming at the long convergence time of PPP-B2b positioning, the improvement of positioning convergence performance based on ionospheric model products is analyzed.
Quasi-4-dimensional ionospheric modeling is introduced into regional ionospheric delay modeling in China and four schemes of 50,100,150 and 200 reference stations uniformly distributed in China (day of year 201—207) are adopted for ionospheric modeling.
The results show that when the number of stations used in ionospheric modeling increases from 50 to 200, the accuracy of ionospheric model products increases from 2-3 TECU to better than 0.8 TECU. Compared with the current ionospheric-free combined PPP, the convergence time of BDS-3 dynamic PPP can be deceased by 77%. In addition, the convergence time of GPS+BDS-3 dynamic PPP is reduced from 13.51 min to 4.45 min.
High-precision ionospheric model products can significantly shorten the convergence time of PPP-B2b.
[1] |
Zumberge J F, Heflin M B, Jefferson D C, et al. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B3): 5005-5017.
|
[2] |
中国卫星导航系统管理办公室.北斗卫星导航系统发展报告(4.0版)[EB/OL].[2019-12-27]. http://www.beidou.gov.cn/yw/xwzx/201912/t20191227_19833.html.
China Satellite Navigation Office. Development of the BeiDou Navigation Satellite System(Version 4.0)[EB/OL].[2019-12-27]. http://www.beidou.gov.cn/yw/xwzx/201912/t20191227_19833.html.
|
[3] |
中国卫星导航系统管理办公室.北斗卫星导航系统空间信号接口控制文件精密单点定位服务信号PPP-B2b(1.0版)[DB/OL].[2019-12]. http://www.beidou.gov.cn/xt/gfxz/201912/P020191227330700017853.pdf.
China Satellite Navigation Office. BeiDou Navigation Satellite System Signal in Space Interface Control Document Precise Point Positioning Service Signal PPP-B2b(Version 1.0)[DB/OL].[2019-12]. http://www.beidou.gov.cn/xt/gfxz/201912/P020191227330700017853.pdf.
|
[4] |
Liu C, Gao W G, Liu T X, et al. Design and Implementation of a BDS Precise Point Positioning Service[J]. Navigation, 2020, 67(4): 875-891.
|
[5] |
Tang C P, Hu X G, Chen J P, et al. Orbit Determination, Clock Estimation and Performance Evaluation of BDS-3 PPP-B2b Service[J]. Journal of Geodesy, 2022, 96(9): 60.
|
[6] |
Xu Y Y, Yang Y X, Li J L. Performance Evaluation of BDS-3 PPP-B2b Precise Point Positioning Service[J]. GPS Solutions, 2021, 25(4): 142.
|
[7] |
宋伟伟, 赵新科, 楼益栋, 等. 北斗三号PPP-B2b服务性能评估[J]. 武汉大学学报(信息科学版), 2023, 48(3): 408-415.
Song Weiwei, Zhao Xinke, Lou Yidong, et al. Performance Evaluation of BDS-3 PPP-B2b Service[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 408-415.
|
[8] |
Liu Y, Yang C, Zhang M N. Comprehensive Analyses of PPP-B2b Performance in China and Surrounding Areas[J]. Remote Sensing, 2022, 14(3): 643.
|
[9] |
Zhang W X, Lou Y D, Song W W, et al. Initial Assessment of BDS-3 Precise Point Positioning Service on GEO B2b Signal[J]. Advances in Space Research, 2022, 69(1): 690-700.
|
[10] |
Ren Z L,Gong H,Peng J,et al. Performance Assessment of Real-Time Precise Point Positioning Using BDS PPP-B2b Service Signal[J]. Advances in Space Research, 2021, 68(8): 3242-3254.
|
[11] |
Tao J, Liu J N, Hu Z G, et al. Initial Assessment of the BDS-3 PPP-B2b RTS Compared with the CNES RTS[J]. GPS Solutions, 2021, 25(4): 131.
|
[12] |
蔡洪亮, 孟轶男, 耿长江, 等. 北斗三号全球导航卫星系统服务性能评估:定位导航授时、星基增强、精密单点定位、短报文通信与国际搜救[J]. 测绘学报, 2021, 50(4): 427-435.
Cai Hongliang, Meng Yinan, Geng Changjiang, et al. BDS-3 Performance Assessment: PNT, SBAS, PPP, SMC and SAR[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 427-435.
|
[13] |
丁文武, 欧吉坤, 李子申, 等. 附加电离层延迟约束的实时动态PPP快速重新初始化方法[J]. 地球物理学报, 2014, 57(6): 1720-1731.
Ding Wenwu, Jikun Ou, Li Zishen, et al. Instantaneous Re-initialization Method of Real Time Kinematic PPP by Adding Ionospheric Delay Constraints[J]. Chinese Journal of Geophysics, 2014, 57(6): 1720-1731.
|
[14] |
Shi C, Gu S F, Lou Y D, et al. An Improved Approach to Model Ionospheric Delays for Single-Frequency Precise Point Positioning[J]. Advances in Space Research, 2012, 49(12): 1698-1708.
|
[15] |
姚宜斌, 冯鑫滢, 彭文杰, 等. 基于CORS的区域大气增强产品对实时PPP的影响[J]. 武汉大学学报(信息科学版), 2019, 44(12): 1739-1748.
Yao Yibin, Feng Xinying, Peng Wenjie, et al. Local Atmosphere Augmentation Based on CORS for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1739-1748.
|
[16] |
宋伟伟, 何成鹏, 辜声峰. 不同纬度区域电离层增强PPP-RTK性能分析[J]. 武汉大学学报(信息科学版), 2021, 46(12): 1832-1842.
Song Weiwei, He Chengpeng, Gu Shengfeng. Performance Analysis of Ionospheric Enhanced PPP-RTK in Different Latitudes[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1832-1842.
|
[17] |
Gu S F, Gan C K, He C P, et al. Quasi-4-Dimension Ionospheric Modeling and Its Application in PPP[J]. Satellite Navigation, 2022, 3(1): 24.
|
[18] |
Zhao Q L, Wang Y T, Gu S F, et al. Refining Ionospheric Delay Modeling for Undifferenced and Uncombined GNSS Data Processing[J]. Journal of Geodesy, 2019, 93(4): 545-560.
|
[19] |
Gu S F, Shi C, Lou Y D, et al. Ionospheric Effects in Uncalibrated Phase Delay Estimation and Ambiguity-Fixed PPP Based on Raw Observable Model[J]. Journal of Geodesy, 2015, 89(5): 447-457.
|
[20] |
Lou Y D, Dai X L, Gong X P, et al. A Review of Real-Time Multi-GNSS Precise Orbit Determination Based on the Filter Method[J]. Satellite Navigation, 2022, 3(1): 15.
|
[21] |
Gong X P, Gu S F, Lou Y D, et al. An Efficient Solution of Real-Time Data Processing for Multi-GNSS Network[J]. Journal of Geodesy, 2018, 92(7): 797-809.
|
[22] |
Gu S F, Dai C Q, Fang W T, et al. Multi-GNSS PPP/INS Tightly Coupled Integration with Atmospheric Augmentation and Its Application in Urban Vehicle Navigation[J]. Journal of Geodesy, 2021, 95(6): 64.
|
[23] |
Lou Y D, Zhang Z, Gong X P, et al. Estimating GPS Satellite and Receiver Differential Code Bias Based on Signal Distortion Bias Calibration[J]. GPS Solutions, 2023, 27(1): 48.
|
[24] |
张小红, 胡家欢, 任晓东. PPP/PPP-RTK新进展与北斗/GNSS PPP定位性能比较[J]. 测绘学报, 2020, 49(9): 1084-1100.
Zhang Xiaohong, Hu Jiahuan, Ren Xiaodong. New Progress of PPP/PPP-RTK and Positioning Performance Comparison of BDS/GNSS PPP[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1084-1100.
|
[1] | YAO Yibin, RAN Qishun, ZHANG Bao. Application of Improved Heuristic Segmentation Algorithm to Step Detection of GNSS Coordinate Time Series[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 648-654. DOI: 10.13203/j.whugis20170322 |
[2] | SHEN Xin, LIU Yulin, LI Shixue, YAO Huang. An Optimization Design Method for High Temporal Resolution Remote Sensing Satellite Constellation Based on Improved PSO Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1986-1993. DOI: 10.13203/j.whugis20180160 |
[3] | Zhan Weiwei, Wang Wei, Chen Nengcheng, Wang Chao. Path Planning Strategies for UAV Based on Improved A*Algorithm[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 315-320. |
[4] | ZHA Feng, XU Jiangning, LI Jingshu, HE Hongyang. Improvement of a Series of Fuzzy Damp Algorithms in SINS[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 705-709. |
[5] | ZHAN Jianfeng, FAN Chong, LI Tao. A Forest Firespot Automatic Detection Algorithm for HJ-IRS Imagery[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1321-1324. |
[6] | LUO Zhicai, LIN Xu, ZHOU Boyang. Improved Algorithm of Autocovariance Least-Squares Noise Estimation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10): 1164-1167. |
[7] | LI Zhenhai, LUO Zhicai, WANG Haihong, LI Qiong. Visualization of Gravity Vector Field Using Improved FLIC Algorithm[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 276-279. |
[8] | YIN Shuling, SHU Ning, LIU Xinhua. Classification of Remote Sensing Image Based on Adaptive GA and Improved BP Algorithm[J]. Geomatics and Information Science of Wuhan University, 2007, 32(3): 201-204. |
[9] | YAO Huanmei, HUANG Rentao, GAN Fuxing, LIU Yang. Principal Component Analysis of the Water Quality Evaluation in East Lake[J]. Geomatics and Information Science of Wuhan University, 2005, 30(8): 732-735. |
[10] | CHEN Jiangping, FU Zhongliang, XU Zhihong. An Improved Algorithm of Apriori[J]. Geomatics and Information Science of Wuhan University, 2003, 28(1): 94-99. |
1. |
袁东,张健,余洋洋,张志良. 差异特征注意力引导的偏振图像高光移除. 光学技术. 2024(02): 247-256 .
![]() | |
2. |
陈毅夫,何敬,刘刚,毛佳琪. 融合Swin-Transformer网络模型的水体高光区域提取. 遥感信息. 2023(04): 129-136 .
![]() | |
3. |
乔玉晶,张思远,赵宇航. 高光弱纹理物体表面鲁棒重建方法. 光子学报. 2019(12): 172-182 .
![]() |