SONG Weiwei, ZHAO Xinke, LOU Yidong, SUN Weibin, ZHAO Zhengyu. Performance Evaluation of BDS-3 PPP-B2b Service[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 408-415. DOI: 10.13203/j.whugis20200686
Citation: SONG Weiwei, ZHAO Xinke, LOU Yidong, SUN Weibin, ZHAO Zhengyu. Performance Evaluation of BDS-3 PPP-B2b Service[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 408-415. DOI: 10.13203/j.whugis20200686

Performance Evaluation of BDS-3 PPP-B2b Service

More Information
  • Received Date: December 15, 2020
  • Available Online: March 23, 2023
  • Published Date: March 04, 2023
  •   Objectives  With the ability of providing real-time precise point positioning (RTPPP) service for China and surrounding countries, the application of BeiDou-3 navigation satellite system(BDS-3) precise point positioning(PPP)-B2b signals have seen a rapid rise in recent years. And the performance evaluation is a vital issue for large deployment in the future, such as the evaluation about the accuracy of orbit and clock error, as well as the analysis of precision and and convergence time for PPP.
      Methods  Based on the observations from September 2020 of the China branch stations of international GNSS monitoring and assessment system(iGMAS), the accuracy of orbit and clock error, as well as the positioning accuracy of B1I+B3I and B1c+B2a signal combination are carefully evaluated in this dissertation.
      Results  The results show that the average accuracy of PPP-B2b orbit products in radial, along-track and cross-track directions are 0.1 m, 0.31 m and 0.3 m, respectively.Besides, the root mean square of clock error correction is 2.26 ns. In terms of PPP convergence, the convergence time of the B1I+B3 signal combination using GFZ BeiDou multi-GNSS(GBM) products is the quickest in the north, east and up directions, with the highest final convergency accuracy. The second is B1I + B3I (PPP-B2b), and B1c + B2a(PPP-B2b) is at the last.
      Conclusions  Summarizing the above discussions, BDS-3 PPP-B2b signals is capable of providing regional PPP service in China.
  • [1]
    中国卫星导航系统管理办公室. 北斗卫星导航系统应用服务体系(1.0版) [EB/OL]. (2019-12-27)[2020-05-05]. http://www.beidou.gov.cn/xt/gfxz/201912/P020191227332811335890.pdf.

    China Satellite Navigation Office. The Application Service Architecture of BeiDou Navigation Satellite System (Version 1.0)[EB/OL]. (2019-12-27)[2020-05-05]. http://www.beidou.gov.cn/xt/gfxz/201912/P020191227332811335890.pdf.
    [2]
    中国卫星导航系统管理办公室. 北斗卫星导航系统空间信号接口控制文件公开服务信号B2b(1.0版)[EB/OL]. (2020-07-01)[2020-05-05]. http://www.beidou.gov.cn/zt/xwfbh/jjcktqkxwfbh/gdxw6/202008/P020200803321778634157.pdf.

    China Satellite Navigation Office. BeiDou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal B2b (Version 1.0)[EB/OL]. (2020-07-01)[2020-05-05]. http://www.beidou.gov.cn/zt/xwfbh/jjcktqkxwfbh/gdxw6/202008/P020200803321778634157.pdf.
    [3]
    中国卫星导航系统管理办公室. 北斗卫星导航系统空间信号接口控制文件精密单点定位服务信号PPP-B2b(1.0版) [EB/OL]. (2020-07-01)[2020-05-05]. http://www.beidou.gov.cn/zt/xwfbh/jjcktqkxwfbh/gdxw6/202008/P020200803322412539295.pdf.

    China Satellite Navigation Office. BeiDou Navigation Satellite System Signal In Space Interface Control Document Precise Point Positioning Service Signal PPP-B2b (Version 1.0)[EB/OL]. (2020-07-01)[2020-05-05]. http://www.beidou.gov.cn/zt/xwfbh/jjcktqkxwfbh/gdxw6/202008/P020200803322412539295.pdf.
    [4]
    曹新运, 沈飞, 李建成, 等. BDS-3/GNSS非组合精密单点定位[J]. 武汉大学学报(信息科学版), 2023, 48(1): 92-100. doi: 10.13203/j.whugis20210198

    Cao Xinyun, Shen Fei, Li Jiancheng, et al. BDS-3/GNSS Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 92-100. doi: 10.13203/j.whugis20210198
    [5]
    赵昂, 杨元喜, 许扬胤, 等. GNSS单系统及多系统组合完好性分析[J]. 武汉大学学报(信息科学版), 2020, 45(1): 72-80. doi: 10.13203/j.whugis20180425

    Zhao Ang, Yang Yuanxi, Xu Yangyin, et al. Integrity Analysis of GNSS Single System and Multi-system Combination[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 72-80. doi: 10.13203/j.whugis20180425
    [6]
    何旭蕾, 刘成, 陈颖, 等. 北斗三号卫星B2b信号解析[J]. 电子技术应用, 2020, 46(3): 1-4.

    He Xulei, Liu Cheng, Chen Ying, et al. Analysis of B2b Signal of BDS Ⅲ Satellite[J]. Application of Electronic Technique, 2020, 46(3): 1-4.
    [7]
    Zumberge J F, Heflin M B, Jefferson D C, et al. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks [J]. Journal of Geophysical Research Atmospheres, 1997, 102(B3): 5005-5017. doi: 10.1029/96JB03860
    [8]
    宋伟伟. 导航卫星实时精密钟差确定及实时精密单点定位理论方法研究[D]. 武汉: 武汉大学, 2011.

    Song Weiwei. Research on Real-Time Clock Offset Determination and Real-Time Precise Point Positioning[D]. Wuhan: Wuhan University, 2011.
    [9]
    闫忠宝, 张小红. GNSS非组合PPP部分模糊度固定方法与结果分析[J]. 武汉大学学报(信息科学版), 2022, 47(6): 979-989. doi: 10.13203/j.whugis20220025

    Yan Zhongbao, Zhang Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. doi: 10.13203/j.whugis20220025
    [10]
    Kouba J. Measuring Seismic Waves Induced by Large Earthquakes with GPS[J]. Studia Geophysica et Geodaetica, 2003, 47(4): 741-755. doi: 10.1023/A:1026390618355
    [11]
    Bisnath S, Gao Y. Current State of Precise Point Positioning and Future Prospects and Limitations[C]//International Association of Geodesy Symposia, Perugia, Italy, 2007.
    [12]
    Guo J, Li X X, Li Z H, et al. Multi-GNSS Precise Point Positioning for Precision Agriculture[J]. Precision Agriculture, 2018, 19(5): 895-911. doi: 10.1007/s11119-018-9563-8
    [13]
    夏凤雨, 叶世榕, 赵乐文, 等. 基于SSR改正的实时精密单点定位精度分析[J]. 导航定位与授时, 2017, 4(3): 52-57.

    Xia Fengyu, Ye Shirong, Zhao Lewen, et al. Analysis of Real-Time Precision Point Positioning Based on SSR Corrections[J]. Navigation Positioning and Timing, 2017, 4(3): 52-57.
    [14]
    王广兴, 赵齐乐. 基于BNC的实时轨道和时钟误差初步分析[C]// 第三届中国卫星导航学术年会, 中国广州, 2012.

    Wang Guangxing, Zhao Qile. Preliminary Analysis of Real-Time Orbit and Clock Error Based on BNC[C]//China Satellite Navigation Conference, Guangzhou, China, 2012.
    [15]
    Yang Y X, Gao W G, Guo S R, et al. Introduction to BeiDou-3 Navigation Satellite System[J]. Navigation, 2019, 66(1): 7-18. doi: 10.1002/navi.291
    [16]
    王海春, 贾小林, 李鼎, 等. 北斗三号卫星广播星历精度评估分析[J]. 导航定位学报, 2019, 7(4): 60-63.

    Wang Haichun, Jia Xiaolin, Li Ding, et al. Accuracy Assessment and Analysis of Broadcast Ephemeris of BDS-3 Satellites[J]. Journal of Navigation and Positioning, 2019, 7(4): 60-63.
    [17]
    Yan X Y, Huang G W, Zhang Q, et al. Estimation of the Antenna Phase Center Correction Model for the BeiDou-3 MEO Satellites[J]. Remote Sensing, 2019, 11(23): 2850.
    [18]
    Zhang B, Jia X L, Sun F P, et al. Performance of BeiDou-3 Satellites: Signal Quality Analysis and Precise Orbit Determination[J]. Advances in Space Research, 2019, 64(3): 687-695.
    [19]
    陈永健. BDS-3新卫星对BDS‐2短基线相对定位精度的影响分析[J]. 测绘地理信息, 2022, 47(2): 6-10.

    Chen Yongjian. Analysis of Impact of New BDS‐3 Satellites on Relative Positioning Accuracy of BDS‐2 Short Baseline[J]. Journal of Geomatics, 2022, 47(2): 6-10.
    [20]
    Kazmierski K, Sośnica K, Hadas T. Quality Assessment of Multi-GNSS Orbits and Clocks for Real-Time Precise Point Positioning[J]. GPS Solutions, 2018, 22(1): 11. doi: 10.1007/s10291-017-0678-6
    [21]
    王乐, 解世超, 黄观文, 等. 北斗三号实时轨道改正数生成及服务性能分析[J]. 测绘地理信息, 2020, 45(4): 51-56.

    Wang Le, Xie Shichao, Huang Guanwen, et al. BDS-3 Satellite Real-Time Orbit Correction Parameters Generation and Service Performance Analysis[J]. Journal of Geomatics, 2020, 45(4): 51-56.
    [22]
    Yang Y X, Mao Y, Sun B J. Basic Performance and Future Developments of BeiDou Global Navigation Satellite System[J]. Satellite Navigation, 2020, 1(1): 1-8.
    [23]
    Lu X C, Chen L, Shen N, et al. Decoding PPP Corrections from BDS B2b Signals Using a Software-Defined Receiver: An Initial Performance Evaluation[J]. IEEE Sensors Journal, 2021, 21(6): 7871-7883.
    [24]
    Liu C, Gao W G, Liu T X, et al. Design and Implementation of a BDS Precise Point Positioning Service[J]. Navigation, 2020, 67(4): 875-891.
    [25]
    The Cabinet Office, Government of Japan. Quasi-Zenith Satellite System Interface Specification Centimeter Level Augmentation Service(IS-QZSS-L6-002)[EB/OL]. (2019-12)[2020-02-10]. https://qzss.go.jp/en/technical/ps-is-qzss/is_qzss_l6_002_agree.html.
    [26]
    Japan Aerospace Exploration Agency. Interface Specification for MADOCA-SEAD[EB/OL]. (2019-07-01)[2020-02-10]. https://ssl.tksc.jaxa.jp/madoca/public/doc/Interface_Specification_B_en.pdf.
    [27]
    布金伟, 左小清, 金立新, 等. BDS/QZSS及其组合系统在中国和日本及周边地区的定位性能评估[J]. 武汉大学学报(信息科学版), 2020, 45(4): 574-585. doi: 10.13203/j.whugis20180228

    Bu Jinwei, Zuo Xiaoqing, Jin Lixin, et al. Positioning Performance Evaluation of BDS/QZSS and Its Combined Systems in China, Japan and Their Peripheral Areas[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 574-585. doi: 10.13203/j.whugis20180228
    [28]
    Göhler E, Krol I, Bodenbach M. A Galileo E 6B/C Receiver: Signals, Prototype, Tests and Performance Conference[C]//ION GNSS+, Portland, USA, 2016.
    [29]
    陈国, 魏娜, 赵齐乐, 等. 多分析中心站坐标产品的综合方法研究[J]. 武汉大学学报(信息科学版), 2019, 44(9): 1289-1295. doi: 10.13203/j.whugis20170363

    Chen Guo, Wei Na, Zhao Qile, et al. Research on the Combination of Station Coordinate Products Derived from Multiple Analysis Centers[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1289-1295. doi: 10.13203/j.whugis20170363
  • Related Articles

    [1]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [2]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [3]ZHAO Qile, TAO Jun, GUO Jing, CHEN Guo, XU Xiaolong, ZHANG Qiang, ZHANG Gaojian, XU Shengyi, LI Junqiang. Wide-Area Instantaneous cm-Level Precise Point Positioning: Method and Service System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1058-1069. DOI: 10.13203/j.whugis20230202
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [6]ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078
    [7]ZHANG Xiaohong, CAI Shixiang, LI Xingxing, GUO Fei. Accuracy Analysis of Time and Frequency Transfer Based on Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 274-278.
    [8]ZHANG Xiaohong, GUO Fei, LI Xingxing, LIN Xiaojing. Study on Precise Point Positioning Based on Combined GPS and GLONASS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 9-12.
    [9]FU Jianhong, YUAN Xiuxiao. Influence of GPS Base Station on Accuracy of Positioning by Airborne Position and Orientation System[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 398-401.
    [10]Huang Shengxiang, Zhang Yan. Estimation of Accuracy Indicators for GPS Relative Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 47-50.
  • Cited by

    Periodical cited type(22)

    1. 肖斌宸,叶飞,叶险峰,曾翔强. 电离层和地形复杂区域北斗/GNSS实时PPP性能及大气分析. 数据与计算发展前沿(中英文). 2025(01): 108-118 .
    2. 侯诚,史俊波,苟劲松,郭际明,邹进贵. 多路径误差对BDS-3变形监测精度的影响. 大地测量与地球动力学. 2024(02): 128-133 .
    3. 邓陈喜,姜维,王剑,蔡伯根. 基于北斗3号PPP-B2b信号的实时精密单点定位方法研究. 铁道学报. 2024(02): 63-73 .
    4. 于合理,孙晓东,贾赞杰,武智佳,代桃高. 限制环境下的GNSS精密授时方法研究综述. 海洋测绘. 2024(02): 46-50 .
    5. 许扬胤,任夏,明锋. 北斗三号PPP-B2b信号精密单点定位服务可用性分析. 全球定位系统. 2024(03): 10-19 .
    6. 肖恭伟,卞逸驰,何在民,广伟,尹翔飞,张润芝. 北斗三号PPP-B2b差分码偏差对UPPP解算的影响. 西安邮电大学学报. 2024(02): 1-10 .
    7. 宋伟伟,宋啟晟,何倩倩,龚晓鹏,辜声峰. 高精度电离层产品增强PPP-B2b定位性能分析. 武汉大学学报(信息科学版). 2024(09): 1517-1526 .
    8. 索世恒,韩昆,张永峰. 伽利略高精度服务产品与其全球定位性能评估. 地理空间信息. 2024(11): 100-104+121 .
    9. 孙爽,王敏,刘长建,孟欣,季锐. PPP-B2b服务钟差常数偏差特性及对定位的影响分析. 测绘科学. 2023(01): 8-15 .
    10. 郭文飞,朱萌萌,辜声峰,左鸿铭,陈金鑫. GNSS精密时频接收机时钟调控模型与参数设计方法. 武汉大学学报(信息科学版). 2023(07): 1126-1133 .
    11. 唐守普,吴文坛,夏振营,史进志,赵婉清,莫雁寒. 北斗三号PPP-B2b独立定位分析与应用. 河北省科学院学报. 2023(03): 61-69 .
    12. 赵淑洁,赵当丽,黄媛媛,纪元法. 基于PPP-B2b改正产品的北斗实时精密星历精度分析. 时间频率学报. 2023(02): 141-149 .
    13. 张润芝,何在民,马红皎,武建锋,广伟,肖恭伟. 北斗三号PPP-B2b信号跟踪环路的极点分布法设计. 时间频率学报. 2023(02): 161-169 .
    14. 姚夏,李志敏,吴如楠,毛飞宇,龚晓鹏. 北斗三号PPP-B2b信号时间同步性能分析. 导航定位学报. 2023(04): 84-89 .
    15. 史俊波,董新莹,欧阳晨皓,彭文杰,姚宜斌. 基于北斗三号PPP服务的快速静态和低动态定位性能分析. 大地测量与地球动力学. 2023(10): 997-1002 .
    16. 韩晓红,孙保琪,张喆,周红源,杨海彦,赵当丽,杨旭海. 基于北斗三号PPP-B2b轨道的实时精密共视时间传递. 导航定位与授时. 2023(04): 103-111 .
    17. 肖鹏,孙付平,张伦东,肖凯,商向永. 北斗三号PPP-B2b服务实时动态定位性能分析. 导航定位学报. 2023(05): 21-28 .
    18. 刘杨,曾安敏,郑翠娥,江鹏,刘焱雄. 广播式远程精密水下导航定位技术. 哈尔滨工程大学学报. 2023(11): 1987-1995 .
    19. 王林伟,周长江,余海锋,岳彩亚. 全球精密单点定位性能评估. 导航定位与授时. 2023(06): 86-92 .
    20. 赵泉涌,潘树国,缪巍巍,沈超,高旺,赵庆. PPP-B2b常数偏差实时改正后的多频单历元定位. 测绘科学. 2023(11): 61-68 .
    21. 彭松,刘建坤,张云龙,常丹,孙兆辉. 基于北斗三号远程监测系统的公路岩质边坡开挖变形分析. 科学技术与工程. 2022(33): 14898-14906 .
    22. 余德荧,金际航,刘一,边少锋. 基于北斗三号PPP-B2b信号的海上精密定位试验分析. 海洋测绘. 2022(06): 51-55+64 .

    Other cited types(9)

Catalog

    Article views (3367) PDF downloads (528) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return