LI Peng, GAO Mengyao, LI Zhenhong, WANG Houjie. Evaluation of Wide-Swath InSAR Tropospheric Delay Estimation Methods over the Altyn Tagh Fault[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6): 879-887. DOI: 10.13203/j.whugis20190236
Citation: LI Peng, GAO Mengyao, LI Zhenhong, WANG Houjie. Evaluation of Wide-Swath InSAR Tropospheric Delay Estimation Methods over the Altyn Tagh Fault[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6): 879-887. DOI: 10.13203/j.whugis20190236

Evaluation of Wide-Swath InSAR Tropospheric Delay Estimation Methods over the Altyn Tagh Fault

Funds: The National Natural Science Foundation of China (41806108); the National Key Research and Development Program of China (2017YFE0133500, 2016YFA0600903); Shandong Provincial Natural Science Foundation (ZR2016DB30); China Postdoctoral Science Foundation (2016M592248); the Fundamental Research Funds for the Central Universities (201713039); Qingdao Indigenous Innovation Program (16‐5‐1‐25‐jch); Qingdao Postdoctoral Application Research Project.
More Information
  • Author Bio:

    LI Peng, PhD, lecturer, specializes in radar interferometry and its applications.pengli@ouc.edu.cn

  • Corresponding author:

    LI Zhenhong, PhD, professor. E-mail:Zhenhong.Li@newcastle.ac.uk

  • Received Date: November 20, 2019
  • Published Date: June 04, 2020
  • In recent years, wide-swath (WS) interferometric synthetic aperture radar (InSAR) technique that has the potential to produce continental-scale maps has been widely used in geological disaster survey and crustal deformation monitoring. However, the impact of tropospheric delay greatly limits its accuracy in mapping small amounts of ground deformation over large spatial areas. Three common used methods, that is ECMWF (European Centre for Medium-Range Weather Forecasts), GACOS (generic atmospheric correction online service for InSAR) and topography-correlated linear relationship, are evaluated to investigate their statistical performance with WS InSAR time series derived from Envisat ASAR ScanSAR and Sentinel-1 TOPOSAR modes over the western segment of the Altyn Tagh Fault. The results show that the GACOS correction method is superior to the other two methods and performs best in capturing both topography-correlated and turbulent mixing tropospheric delays. For Envisat ASAR and Sentinel-1 datasets, the mean reduction of phase standard deviation after GACOS correction can reach 68.1% and 54.5% respectively. The linear correction method can perform relatively well in large-scale areas with rough topography when vertical atmospheric stratification dominates the tropospheric delay. Due to a lack of ground meteorological observation, ECMWF products with limited spatial and temporal resolution cannot accurately reveal the local details. As a fast, robust and effective online service for tropospheric delay estimation and correction, GACOS products can provide critical and reliable support for global InSAR users in large-scale geological disaster applications.
  • [1]
    李鹏, 李振洪, 李陶, 等. 宽幅InSAR大地测量学与大尺度形变监测方法[J]. 武汉大学学报·信息科学版, 2017, 42(9):1195-1202 doi: 10.13203/j.whugis20150587

    Li Peng, Li Zhenhong, Li Tao, et al. Wide-Swath InSAR Geodesy and Its Applications to Large-Scale Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9):1195-1202 doi: 10.13203/j.whugis20150587
    [2]
    李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J]. 武汉大学学报·信息科学版, 2019, 44(7):967-979 doi: 10.13203/j.whugis20190098

    Li Zhenhong, Song Chuang, Yu Chen, et al. Application of Satellite Radar Remote Sensing to Landslide Detection and Monitoring:Challenges and Solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):967-979 doi: 10.13203/j.whugis20190098
    [3]
    李振洪, 李鹏, 丁咚, 等. 全球高分辨率数字高程模型研究进展与展望[J]. 武汉大学学报·信息科学版, 2018, 43(12):1927-1942 doi: 10.13203/j.whugis20180295

    Li Zhenhong, Li Peng, Ding Dong, et al. Research Progress of Global High Resolution Digital Elevation Models[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1927-1942 doi: 10.13203/j.whugis20180295
    [4]
    Li Z, Cao Y, Wei J, et al. Time-Series InSAR Ground Deformation Monitoring:Atmospheric Delay Modeling and Estimating[J]. Earth-Science Reviews, 2019, 192:258-284 doi: 10.1016/j.earscirev.2019.03.008
    [5]
    Dong J, Zhang L, Liao M, et al. Improved Correction of Seasonal Tropospheric Delay in InSAR Observations for Landslide Deformation Monitoring[J]. Remote Sensing of Environment, 2019, 233:111370 doi: 10.1016/j.rse.2019.111370
    [6]
    Bekaert D P S, Walters R J, Wright T J, et al. Statistical Comparison of InSAR Tropospheric Correction Techniques[J]. Remote Sensing of Environment, 2015, 170:40-47 doi: 10.1016/j.rse.2015.08.035
    [7]
    Jolivet R, Agram P S, Lin N Y, et al. Improving InSAR Geodesy Using Global Atmospheric Models[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(3):2324-2341 doi: 10.1002/2013JB010588
    [8]
    Li Z H, Pasquali P, Cantone A, et al. MERIS Atmospheric Water Vapor Correction Model for Wide Swath Interferometric Synthetic Aperture Radar[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2):257-261 doi: 10.1109/LGRS.2011.2166053
    [9]
    Lin Y N, Simons M, Hetland E A, et al. A Multiscale Approach to Estimating Topographically Correlated Propagation Delays in Radar Interferograms[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(9):Q09002 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2010GC003228
    [10]
    宋小刚, 李德仁, 廖明生, 等. 基于GPS观测量的InSAR干涉图中对流层改正方法及其论证[J]. 武汉大学学报·信息科学版, 2008, 33(3):233-236 http://ch.whu.edu.cn/article/id/1561

    Song Xiaogang, Li Deren, Liao Mingsheng, et al. A Method to Correct Tropospheric Delay in SAR Interferometry from GPS Observations[J]. Geomatics and Information Science of Wuhan University, 2008, 33(3):233-236 http://ch.whu.edu.cn/article/id/1561
    [11]
    Li Z H, Fielding E J, Cross P, et al. Advanced InSAR Atmospheric Correction:MERIS/MODIS Combination and Stacked Water Vapour Models[J]. International Journal of Remote Sensing, 2009, 30(13):3343-3363 doi: 10.1080/01431160802562172
    [12]
    Parker A L, Biggs J, Walters R J, et al. Systematic Assessment of Atmospheric Uncertainties for InSAR Data at Volcanic Arcs Using Large-Scale Atmospheric Models:Application to the Cascade Volcanoes, United States[J]. Remote Sensing of Environment, 2015, 170:102-114 doi: 10.1016/j.rse.2015.09.003
    [13]
    Yu C, Li Z, Penna N T, et al. Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(10):9202-9222 doi: 10.1029/2017JB015305
    [14]
    Yu C, Li Z, Penna N T. Interferometric Synthetic Aperture Radar Atmospheric Correction Using a GPS-Based Iterative Tropospheric Decomposition Model[J]. Remote Sensing of Environment, 2018, 204:109-121 doi: 10.1016/j.rse.2017.10.038
    [15]
    Elliott J R, Biggs J, Parsons B, et al. InSAR Slip Rate Determination on the Altyn Tagh Fault, Northern Tibet, in the Presence of Topographically Correlated Atmospheric Delays[J]. Geophysical Research Letters, 2008, 35(L12309):1-5 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2008GL033659
    [16]
    Doin M P, Lasserre C, Peltzer G, et al. Corrections of Stratified Tropospheric Delays in SAR Interferometry:Validation with Global Atmospheric Models[J]. Journal of Applied Geophysics, 2009, 69(1):35-50 doi: 10.1016/j.jappgeo.2009.03.010
    [17]
    Jolivet R, Grandin R, Lasserre C, et al. Systematic InSAR Tropospheric Phase Delay Corrections from Global Meteorological Reanalysis Data[J]. Geophysical Research Letters, 2011, 38(17):L17311 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0224700399/
    [18]
    Yu C, Penna N T, Li Z. Generation of Real-Time Mode High-Resolution Water Vapor Fields from GPS Observations[J]. Journal of Geophysical Research:Atmospheres, 2017, 122(3):2008-2025 doi: 10.1002/2016JD025753
    [19]
    Delacourt C. Tropospheric Correction of SAR Interferograms with Strong Topography:Application to Etna[J]. Geophysical Research Letters, 1998, 25(15):2849-2852 doi: 10.1029/98GL02112
    [20]
    Cavalié O, Doin M P, Lasserre C, et al. Ground Motion Measurement in the Lake Mead Area, Nevada, by Differential Synthetic Aperture Radar Interferometry Time Series Analysis:Probing the Lithosphere Rheological Structure[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B3):403 https://www.researchgate.net/publication/238013428_Ground_Motion_Measurement_in_the_Lake_Mead_Area_Nevada_USA_by_DinSAR_Time_Series_Analysis_Probing_of_the_Lithosphere_Rheological_Structure
  • Related Articles

    [1]LONG En, LÜ Shouye, QU Xiaofei, MENG Gang, LAI Guangling, YANG Yuke. Height Inversion Model of Oil Tank Using Satellite Imagery with Same Name Arc Distance[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 411-418. DOI: 10.13203/j.whugis20210239
    [2]LÜ Pinji, LI Zhengyuan, SUN Lingli, LIN Jun, TANG Lei, NI Yipeng. Analysis of Impact of the Tonga Volcanic Eruption in 2022 on the Strain Observation of Chinese Mainland[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 927-933. DOI: 10.13203/j.whugis20220174
    [3]LEI Xiangxu, SANG Jizhang, LI Zhenwei, CHEN Junyu, DU Jianli, HE Donglei. Association of Very-Short-Arc Angles Data for LEO Space Objects[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1526-1532. DOI: 10.13203/j.whugis20180386
    [4]LOU Yidong, YAO Xiuguang, LIU Yang, ZHENG Fu. Impact of Ambiguity Resolution and Arc Length on Regional Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 249-254. DOI: 10.13203/j.whugis20140201
    [5]LIU Xiaoxia, JIANG Zaisen, WU Yanqiang. The Applicability of Kriging Interpolation Method in GPSVelocity Gridding and Strain Calculating[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 457-461. DOI: 10.13203/j.whugis20120086
    [6]WU Yanqiang, JIANG Zaisen, YANG Guohua, FANG Ying. Application and Method of GPS Strain Calculating in Whole Mode Using Multi-Surface Function[J]. Geomatics and Information Science of Wuhan University, 2009, 34(9): 1085-1089.
    [7]DING Kaihua, XU Cajjun. Current Crustal Strain Field in the Sichuan-Yunnan Area by Joint Inversion of GPS and Seismic Moment Tensor[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3): 265-268.
    [8]ZHU Xinhui, SUN Fuping, QIN Yong. Establishment of Plate Motion Model by the Integrated Data of GPS and VLBI[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 604-608.
    [9]DU Ruilin, QIAO Xuejun, YANG Shaomin, WANG Qi. Results of the Crustal Deformation by GPS Survey and Horizontal Strain Rate Fields in the Three Gorges Area[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 768-771.
    [10]Zhang Zuxun, Bao Xiuzhi, Cao Hui. Arc Spline and Arclet Processing[J]. Geomatics and Information Science of Wuhan University, 1994, 19(3): 189-193.
  • Cited by

    Periodical cited type(5)

    1. 黄少华,万永革,冯淦,李枭,关兆萱. 2022年9月17日中国台湾地震序列的触发机制及其动力学成因. 地质力学学报. 2023(05): 674-684 .
    2. 李之诺,卢佳遇,高锐,陈致同. 斜向聚合及弧后伸展作用对台湾北部-琉球地区的构造影响——砂箱模型实验的启示. 地球学报. 2022(05): 609-615 .
    3. 李建涛,刚慧龙. 基于ITRF14框架的URCORS坐标分析. 工程勘察. 2022(10): 62-66 .
    4. 高源,瞿伟,张勤,王庆良,郝明. GNSS揭示的汾渭盆地及周缘现今地壳运动与应变差异. 武汉大学学报(信息科学版). 2021(07): 1063-1070+1113 .
    5. 徐良叶,邵德盛,吴学群,牛甜. 最小二乘配置的云南区域形变与应变特征研究. 测绘科学. 2021(12): 16-23+74 .

    Other cited types(4)

Catalog

    Article views (1474) PDF downloads (94) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return