LEI Xiangxu, SANG Jizhang, LI Zhenwei, CHEN Junyu, DU Jianli, HE Donglei. Association of Very-Short-Arc Angles Data for LEO Space Objects[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1526-1532. DOI: 10.13203/j.whugis20180386
Citation: LEI Xiangxu, SANG Jizhang, LI Zhenwei, CHEN Junyu, DU Jianli, HE Donglei. Association of Very-Short-Arc Angles Data for LEO Space Objects[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1526-1532. DOI: 10.13203/j.whugis20180386

Association of Very-Short-Arc Angles Data for LEO Space Objects

Funds: 

The National Natural Science Foundation of China 41874035

More Information
  • Author Bio:

    LEI Xiangxu, PhD, specializes in the space debris surveillance. E-mail:xxlei@whu.edu.cn

  • Received Date: September 24, 2018
  • Published Date: October 04, 2020
  • The initial orbit determination (IOD) of the very-short-arc (VSA) and the association between them are the key steps for expanding the catalogue with optical observations obtained from ground-based or space-based telescopes. For this reason, the distance search method for IOD and the geometrical method for their association were proposed. With optical observations from ground-based small telescopes array at Changchun Observatory, National Astronomical Observatories, China Academy of Sciences in Changchun and simulated observations from space-based telescope, the IOD and the association between the IODs are performed. The successful rates of getting an IOD solution for an optical arc with the distance search method is about 90%. For two kinds of observations. The IOD association results show that the true positive (assert that they are from same object for IODs from a same object) rate is over 80% in most cases. Ant the effects on the association accuracy of filtered different IODs are analyzed in depth. With actual optical observations obtained at Changchun, the results of IOD and their association show the validity of the IOD method and association method used in this paper and they can be used to expand the space object catalogue.
  • [1]
    Liou J C. Space Debris Quarterly News[R]. NASA, 2018, 22(1): 1-12
    [2]
    Wagner P, Hampf D, Riede W. Passive Optical Space Surveillance System for Initial LEO Object Detection[C]. Proceedings of 66th IAC, Jerusalem, Israel, 2015
    [3]
    Liou J C. Overview of the Orbital Debris Environment[C]. Space Traffic Management Conference, Henderson, US, 2018
    [4]
    闫军, 郑世贵, 韩增尧, 等.天宫一号空间碎片防护设计与实践[J].中国科学: 技术科学, 2014, 44(3): 243-250 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201403003

    Yan Jun, Zheng Shigui, Han Zengyao, et al. Space Debris Protection Design and Application for Tiangong-1[J]. Sci Sin Tech, 2014, 44(3): 243-250 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201403003
    [5]
    Liou J C. Space Debris Quarterly News[R]. NASA. 2015, 19(4): 1-12
    [6]
    桑吉章, 陈立娟, 李彬, 等.空间目标轨道信息软件平台的建设[J].航天器环境工程, 2016, 33(1): 1-6 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=htqhjgc201601001

    Sang Jizhang, Chen Lijuan, Li Bin, et al. Development of Space Object Orbit Information Software Platform[J]. Spacecraft Environment Engineering, 2016, 33(1): 1-6 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=htqhjgc201601001
    [7]
    王敏.复杂背景下的空间目标自动识别技术[D].长春: 中国科学院长春光学精密机械与物理研究所, 2017

    Wang Min. Automatic Recognition of Space Targets in Complex Background[D]. Changchun: Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2017
    [8]
    邢东旭, 柳仲贵, 张艳.观测数据关联的泰勒展开径向速率方法[J].飞行器测控学报, 2015, 34 (4):374-380 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxqckxb201504012

    Xing Dongxu, Liu Zhonggui, Zhang Yan. Radial Velocity Method Based on Taylor Expansion for Observation Data Association[J]. Journal of Spacecraft TT & C Technology, 2015, 34 (4):374-380 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxqckxb201504012
    [9]
    Hussein I I, Roscoe C W T, Wilkins M P, et al. Track-to-Track Association Using Bhattacharyya Divergence[C]. Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Wailea, HI, 2015
    [10]
    Schildknecht T, Musci R, Ploner M, et al. Optical Observations of Space Debris in GEO and in Highly-eccentric Orbits[J]. Advances in Space Research, 2004, 34(5): 901-911 doi: 10.1016/j.asr.2003.01.009
    [11]
    Hill K, Sabol C, Alfriend K T. Comparison of Covariance-based Track Association Approaches Using Simulated Radar Data[J]. Journal of the Astronautical Sciences, 2012, 59(1-2): 281-300 doi: 10.1007/s40295-013-0018-1
    [12]
    Hill K, Alfriend K, Sabol C. Covariance- Based Uncorrelated Track Association[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Hawaii, US, 2008
    [13]
    Sang J Z, Lei X X, Zhang P, et al. Orbital Solutions to LEO-to-LEO Angles-Only very Short-Arc Tracks[C]. 7th European Conference on Space Debris, Darmstadt, Germany, 2017
    [14]
    Lei X X, Wang K P, Zhang P, et al. A Geometrical Approach to Association of Space-Based very Short-Arc LEO Tracks[J]. Advances in Space Research, 2018, 62(3): 542-553 doi: 10.1016/j.asr.2018.04.044
  • Related Articles

    [1]ZHANG Yongze, DA Feipeng. A Multi-object Tracking Method Based on Dilatation Region Matching and Adaptive Trajectory Management Strategy[J]. Geomatics and Information Science of Wuhan University, 2024, 49(4): 572-581. DOI: 10.13203/j.whugis20230359
    [2]ZHAO Liqian, HU Xiaogong, ZHOU Shanshi, TANG Chengpan, YANG Yufei. Determination of BDS Monitoring Stations Coordinates and Its Influence on Orbit Determination Accuracy[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1501-1507. DOI: 10.13203/j.whugis20180468
    [3]LOU Yidong, YAO Xiuguang, LIU Yang, ZHENG Fu. Impact of Ambiguity Resolution and Arc Length on Regional Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 249-254. DOI: 10.13203/j.whugis20140201
    [4]LIU Wanke, GONG Xiaoying, LI Zhenghang, WANG Fuhong. Combined Orbit Determination of Navigation Satellites with Cross-link Ranging Observations and Ground Tracking Observations[J]. Geomatics and Information Science of Wuhan University, 2010, 35(7): 811-815.
    [5]WANG Zhengtao, JIN Xiangsheng, DANG Yamin, JIANG Weiping. Numerical Integration Error Analysis of Initial Orbit Vectors and Force Model Parameters in Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2009, 34(6): 728-731.
    [6]LOU Yidong, SHI Chuang, GE Maorong, ZHAO Qile. GPS Real Time Orbit Determination and Initial Results Analysis[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 815-817.
    [7]WEI Erhu, LIU Jingnan, YAN Wei. On Orbit Determination Accuracy of ASTRON-G and Its Tracking Efficiency by Ground Tracking Network[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 711-714.
    [8]SHI Chuang, LI Min, LOU Yidong, ZOU Rong. Near Real-time Orbit Determination of Navigation Satellite Using Regional Tracking Network[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 697-700.
    [9]XIONG Ping, ZHU Tianqing, HUANG Tianshu. Algorithm of Mining Fuzzy Associate Rules in Anomaly Detection[J]. Geomatics and Information Science of Wuhan University, 2005, 30(9): 841-845.
    [10]ZHAO Chunmei, OU Jikun. Estimation Error of Initial State Parameters for Low-Orbit Satellite Orbit Determination Based on GPS[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 646-650.
  • Cited by

    Periodical cited type(12)

    1. 陈月,王磊,池深深,王羽,戚鑫鑫,朱尚军. 基于SBAS-InSAR和CNN-GRU模型的采动村庄地表沉降监测预计. 金属矿山. 2025(02): 138-144 .
    2. 倪尔瑞,张建新,邱明剑,权力奥,朱晓峻. 基于SBAS-InSAR技术的淮北市地表沉降监测分析. 北京测绘. 2024(03): 312-317 .
    3. 吴启琛,于瑞鹏,王丽,赵乙泽,范开放. 利用Sentinel-1的山东枣庄高新区地面沉降监测与分析. 地理空间信息. 2024(06): 80-83 .
    4. 杨芳,丁仁军,李勇发. 基于SBAS-InSAR技术的金沙江流域典型滑坡时空演化特征分析. 测绘通报. 2024(11): 102-107 .
    5. 祝杰,李瑜,师宏波,刘洋洋,韩宇飞,邵银星,王坦. 鹤岗煤矿区地面沉降时空特征InSAR时间序列监测研究. 中国地震. 2023(03): 596-608 .
    6. 柴龙飞,魏路,张震. 基于SBAS-InSAR的安徽省宿州市埇桥区2019—2022年地面沉降监测及影响因素分析研究. 安徽地质. 2023(04): 348-352 .
    7. 祝杰,韩宇飞,王坦,李瑜,王阅兵,师宏波,刘洋洋,樊俊屹,邵银星. 2017年九寨沟M_S7.0地震同震地表三维形变场解算研究. 中国地震. 2022(02): 348-359 .
    8. 吴毅彬,葛红斌,刘光庆,刘海旺. 基于MT-InSAR技术的厦门新机场填海区沉降监测. 工程勘察. 2021(02): 57-61 .
    9. 翟振起. 基于InSAR沉降监测技术的城市供水管线安全监测系统开发. 水利科学与寒区工程. 2021(01): 103-106 .
    10. 廖明生,王茹,杨梦诗,王楠,秦晓琼,杨天亮. 城市目标动态监测中的时序InSAR分析方法及应用. 雷达学报. 2020(03): 409-424 .
    11. 熊寻安,王明洲,龚春龙. MT-InSAR技术监测水库土石坝表面变形研究. 测绘地理信息. 2019(05): 78-81 .
    12. 王茹,杨天亮,杨梦诗,廖明生,林金鑫,张路. PS-InSAR技术对上海高架路的沉降监测与归因分析. 武汉大学学报(信息科学版). 2018(12): 2050-2057 .

    Other cited types(4)

Catalog

    Article views (1093) PDF downloads (61) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return