Citation: | LEI Xiangxu, SANG Jizhang, LI Zhenwei, CHEN Junyu, DU Jianli, HE Donglei. Association of Very-Short-Arc Angles Data for LEO Space Objects[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1526-1532. DOI: 10.13203/j.whugis20180386 |
[1] |
Liou J C. Space Debris Quarterly News[R]. NASA, 2018, 22(1): 1-12
|
[2] |
Wagner P, Hampf D, Riede W. Passive Optical Space Surveillance System for Initial LEO Object Detection[C]. Proceedings of 66th IAC, Jerusalem, Israel, 2015
|
[3] |
Liou J C. Overview of the Orbital Debris Environment[C]. Space Traffic Management Conference, Henderson, US, 2018
|
[4] |
闫军, 郑世贵, 韩增尧, 等.天宫一号空间碎片防护设计与实践[J].中国科学: 技术科学, 2014, 44(3): 243-250 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201403003
Yan Jun, Zheng Shigui, Han Zengyao, et al. Space Debris Protection Design and Application for Tiangong-1[J]. Sci Sin Tech, 2014, 44(3): 243-250 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201403003
|
[5] |
Liou J C. Space Debris Quarterly News[R]. NASA. 2015, 19(4): 1-12
|
[6] |
桑吉章, 陈立娟, 李彬, 等.空间目标轨道信息软件平台的建设[J].航天器环境工程, 2016, 33(1): 1-6 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=htqhjgc201601001
Sang Jizhang, Chen Lijuan, Li Bin, et al. Development of Space Object Orbit Information Software Platform[J]. Spacecraft Environment Engineering, 2016, 33(1): 1-6 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=htqhjgc201601001
|
[7] |
王敏.复杂背景下的空间目标自动识别技术[D].长春: 中国科学院长春光学精密机械与物理研究所, 2017
Wang Min. Automatic Recognition of Space Targets in Complex Background[D]. Changchun: Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2017
|
[8] |
邢东旭, 柳仲贵, 张艳.观测数据关联的泰勒展开径向速率方法[J].飞行器测控学报, 2015, 34 (4):374-380 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxqckxb201504012
Xing Dongxu, Liu Zhonggui, Zhang Yan. Radial Velocity Method Based on Taylor Expansion for Observation Data Association[J]. Journal of Spacecraft TT & C Technology, 2015, 34 (4):374-380 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxqckxb201504012
|
[9] |
Hussein I I, Roscoe C W T, Wilkins M P, et al. Track-to-Track Association Using Bhattacharyya Divergence[C]. Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Wailea, HI, 2015
|
[10] |
Schildknecht T, Musci R, Ploner M, et al. Optical Observations of Space Debris in GEO and in Highly-eccentric Orbits[J]. Advances in Space Research, 2004, 34(5): 901-911 doi: 10.1016/j.asr.2003.01.009
|
[11] |
Hill K, Sabol C, Alfriend K T. Comparison of Covariance-based Track Association Approaches Using Simulated Radar Data[J]. Journal of the Astronautical Sciences, 2012, 59(1-2): 281-300 doi: 10.1007/s40295-013-0018-1
|
[12] |
Hill K, Alfriend K, Sabol C. Covariance- Based Uncorrelated Track Association[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Hawaii, US, 2008
|
[13] |
Sang J Z, Lei X X, Zhang P, et al. Orbital Solutions to LEO-to-LEO Angles-Only very Short-Arc Tracks[C]. 7th European Conference on Space Debris, Darmstadt, Germany, 2017
|
[14] |
Lei X X, Wang K P, Zhang P, et al. A Geometrical Approach to Association of Space-Based very Short-Arc LEO Tracks[J]. Advances in Space Research, 2018, 62(3): 542-553 doi: 10.1016/j.asr.2018.04.044
|
[1] | ZHANG Yongze, DA Feipeng. A Multi-object Tracking Method Based on Dilatation Region Matching and Adaptive Trajectory Management Strategy[J]. Geomatics and Information Science of Wuhan University, 2024, 49(4): 572-581. DOI: 10.13203/j.whugis20230359 |
[2] | ZHAO Liqian, HU Xiaogong, ZHOU Shanshi, TANG Chengpan, YANG Yufei. Determination of BDS Monitoring Stations Coordinates and Its Influence on Orbit Determination Accuracy[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1501-1507. DOI: 10.13203/j.whugis20180468 |
[3] | LOU Yidong, YAO Xiuguang, LIU Yang, ZHENG Fu. Impact of Ambiguity Resolution and Arc Length on Regional Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 249-254. DOI: 10.13203/j.whugis20140201 |
[4] | LIU Wanke, GONG Xiaoying, LI Zhenghang, WANG Fuhong. Combined Orbit Determination of Navigation Satellites with Cross-link Ranging Observations and Ground Tracking Observations[J]. Geomatics and Information Science of Wuhan University, 2010, 35(7): 811-815. |
[5] | WANG Zhengtao, JIN Xiangsheng, DANG Yamin, JIANG Weiping. Numerical Integration Error Analysis of Initial Orbit Vectors and Force Model Parameters in Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2009, 34(6): 728-731. |
[6] | LOU Yidong, SHI Chuang, GE Maorong, ZHAO Qile. GPS Real Time Orbit Determination and Initial Results Analysis[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 815-817. |
[7] | WEI Erhu, LIU Jingnan, YAN Wei. On Orbit Determination Accuracy of ASTRON-G and Its Tracking Efficiency by Ground Tracking Network[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 711-714. |
[8] | SHI Chuang, LI Min, LOU Yidong, ZOU Rong. Near Real-time Orbit Determination of Navigation Satellite Using Regional Tracking Network[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 697-700. |
[9] | XIONG Ping, ZHU Tianqing, HUANG Tianshu. Algorithm of Mining Fuzzy Associate Rules in Anomaly Detection[J]. Geomatics and Information Science of Wuhan University, 2005, 30(9): 841-845. |
[10] | ZHAO Chunmei, OU Jikun. Estimation Error of Initial State Parameters for Low-Orbit Satellite Orbit Determination Based on GPS[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 646-650. |