LEI Xiangxu, SANG Jizhang, LI Zhenwei, CHEN Junyu, DU Jianli, HE Donglei. Association of Very-Short-Arc Angles Data for LEO Space Objects[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1526-1532. DOI: 10.13203/j.whugis20180386
Citation: LEI Xiangxu, SANG Jizhang, LI Zhenwei, CHEN Junyu, DU Jianli, HE Donglei. Association of Very-Short-Arc Angles Data for LEO Space Objects[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1526-1532. DOI: 10.13203/j.whugis20180386

Association of Very-Short-Arc Angles Data for LEO Space Objects

Funds: 

The National Natural Science Foundation of China 41874035

More Information
  • Author Bio:

    LEI Xiangxu, PhD, specializes in the space debris surveillance. E-mail:xxlei@whu.edu.cn

  • Received Date: September 24, 2018
  • Published Date: October 04, 2020
  • The initial orbit determination (IOD) of the very-short-arc (VSA) and the association between them are the key steps for expanding the catalogue with optical observations obtained from ground-based or space-based telescopes. For this reason, the distance search method for IOD and the geometrical method for their association were proposed. With optical observations from ground-based small telescopes array at Changchun Observatory, National Astronomical Observatories, China Academy of Sciences in Changchun and simulated observations from space-based telescope, the IOD and the association between the IODs are performed. The successful rates of getting an IOD solution for an optical arc with the distance search method is about 90%. For two kinds of observations. The IOD association results show that the true positive (assert that they are from same object for IODs from a same object) rate is over 80% in most cases. Ant the effects on the association accuracy of filtered different IODs are analyzed in depth. With actual optical observations obtained at Changchun, the results of IOD and their association show the validity of the IOD method and association method used in this paper and they can be used to expand the space object catalogue.
  • [1]
    Liou J C. Space Debris Quarterly News[R]. NASA, 2018, 22(1): 1-12
    [2]
    Wagner P, Hampf D, Riede W. Passive Optical Space Surveillance System for Initial LEO Object Detection[C]. Proceedings of 66th IAC, Jerusalem, Israel, 2015
    [3]
    Liou J C. Overview of the Orbital Debris Environment[C]. Space Traffic Management Conference, Henderson, US, 2018
    [4]
    闫军, 郑世贵, 韩增尧, 等.天宫一号空间碎片防护设计与实践[J].中国科学: 技术科学, 2014, 44(3): 243-250 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201403003

    Yan Jun, Zheng Shigui, Han Zengyao, et al. Space Debris Protection Design and Application for Tiangong-1[J]. Sci Sin Tech, 2014, 44(3): 243-250 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201403003
    [5]
    Liou J C. Space Debris Quarterly News[R]. NASA. 2015, 19(4): 1-12
    [6]
    桑吉章, 陈立娟, 李彬, 等.空间目标轨道信息软件平台的建设[J].航天器环境工程, 2016, 33(1): 1-6 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=htqhjgc201601001

    Sang Jizhang, Chen Lijuan, Li Bin, et al. Development of Space Object Orbit Information Software Platform[J]. Spacecraft Environment Engineering, 2016, 33(1): 1-6 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=htqhjgc201601001
    [7]
    王敏.复杂背景下的空间目标自动识别技术[D].长春: 中国科学院长春光学精密机械与物理研究所, 2017

    Wang Min. Automatic Recognition of Space Targets in Complex Background[D]. Changchun: Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2017
    [8]
    邢东旭, 柳仲贵, 张艳.观测数据关联的泰勒展开径向速率方法[J].飞行器测控学报, 2015, 34 (4):374-380 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxqckxb201504012

    Xing Dongxu, Liu Zhonggui, Zhang Yan. Radial Velocity Method Based on Taylor Expansion for Observation Data Association[J]. Journal of Spacecraft TT & C Technology, 2015, 34 (4):374-380 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxqckxb201504012
    [9]
    Hussein I I, Roscoe C W T, Wilkins M P, et al. Track-to-Track Association Using Bhattacharyya Divergence[C]. Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Wailea, HI, 2015
    [10]
    Schildknecht T, Musci R, Ploner M, et al. Optical Observations of Space Debris in GEO and in Highly-eccentric Orbits[J]. Advances in Space Research, 2004, 34(5): 901-911 doi: 10.1016/j.asr.2003.01.009
    [11]
    Hill K, Sabol C, Alfriend K T. Comparison of Covariance-based Track Association Approaches Using Simulated Radar Data[J]. Journal of the Astronautical Sciences, 2012, 59(1-2): 281-300 doi: 10.1007/s40295-013-0018-1
    [12]
    Hill K, Alfriend K, Sabol C. Covariance- Based Uncorrelated Track Association[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Hawaii, US, 2008
    [13]
    Sang J Z, Lei X X, Zhang P, et al. Orbital Solutions to LEO-to-LEO Angles-Only very Short-Arc Tracks[C]. 7th European Conference on Space Debris, Darmstadt, Germany, 2017
    [14]
    Lei X X, Wang K P, Zhang P, et al. A Geometrical Approach to Association of Space-Based very Short-Arc LEO Tracks[J]. Advances in Space Research, 2018, 62(3): 542-553 doi: 10.1016/j.asr.2018.04.044
  • Related Articles

    [1]LI Pangyin, MI Xiaoxin, DING Penghui, SUN Weichen, ZHANG Huazu, LIU Chong, DONG Zhen, YANG Bisheng. Fusion of Vehicle-Mounted Imagery and Point Cloud for Road Boundary Extraction and Vectorization[J]. Geomatics and Information Science of Wuhan University, 2024, 49(4): 631-639. DOI: 10.13203/j.whugis20230284
    [2]XING Ruixing, WU Fang, ZHANG Hao, GONG Xianyong. Dual-carriageway Road Extraction Based on Facing Project Distance[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 152-158. DOI: 10.13203/j.whugis20150783
    [3]Liu Yuangang, Guo Qingsheng, Sun Yageng, Lin Qing, Zheng Chunyan. An Algorithm for Skeleton Extraction Between Map Objects[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2): 264-268.
    [4]LUAN Xuechen, FAN Hongchao, YANG Bisheng, LI Qiuping. Arterial Roads Extraction in Urban Road NetworksBased on Shape Analysis[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 327-331. DOI: 10.13203/j.whugis20120078
    [5]YU Jie, YU Feng, ZHANG Jing, LIU Zhenyu. High Resolution Remote Sensing Image Road Extraction Combining Region Growing and Road-unit[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 761-764.
    [6]TIAN Jing, SONG Zihan, AI Tinghua. Grid Pattern Extraction in Road Networks with Graph[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 724-727.
    [7]WU Xiaobo, YANG Liao, SHEN Jinxiang, WANG Jie. Road Extraction from High-resolution Remote Sensing Images with Spatial Continuity[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1298-1301.
    [8]LI Jiatian, LI Jia, DUAN Ping, YU Li. Perspective Projection Algorithm for Sphere Delaunay Triangulated Irregular Network[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9): 1116-1119.
    [9]CHEN Tao, AI Tinghua. Automatic Extraction of Skeleton and Center of Area Feature[J]. Geomatics and Information Science of Wuhan University, 2004, 29(5): 443-446,455. DOI: 10.13203/j.whugis2004.05.015
    [10]Liu Shaochuang, Lin Zongjian. Semi automatic Road Extraction from Aerial Images[J]. Geomatics and Information Science of Wuhan University, 1996, 21(3): 258-264.
  • Cited by

    Periodical cited type(1)

    1. 陈星铨,朱俊江,朱庆龙,焦钰涵,丁小笑,刘政渊,丁咚,贾永刚,李三忠,刘永江. 南海多波束测量中水深数据异常的精细处理与成因分析. 地球科学. 2025(02): 535-550 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return