LOU Yidong, YAO Xiuguang, LIU Yang, ZHENG Fu. Impact of Ambiguity Resolution and Arc Length on Regional Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 249-254. DOI: 10.13203/j.whugis20140201
Citation: LOU Yidong, YAO Xiuguang, LIU Yang, ZHENG Fu. Impact of Ambiguity Resolution and Arc Length on Regional Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 249-254. DOI: 10.13203/j.whugis20140201

Impact of Ambiguity Resolution and Arc Length on Regional Precise Orbit Determination

Funds: The National Natural Science Foundation of China, No. 41374034.
More Information
  • Received Date: September 26, 2014
  • Published Date: February 04, 2016
  • It is difficult for the BeiDou satellite navigation system to establish a global tracking network abroad, therefore regional tracking station observations are an important tool to achieve precise orbit determination (POD). Our investigation demonstrates that ambiguity resolution and reasonable arc length are important factors for improving the accuracy of regional orbit determination. GPS observations from CMONOC were adopted to simulate regional precise orbit determination; under the condition of the same station distribution, the accuracy of POD with ambiguity resolution was better than 30% with floating solution. Furthermore, the 3D RMS of an orbit with ambiguity resolution using seven stations was about 20 cm, better than the results of an ambiguity float solution using 50 stations. In addition, we evaluated the impact of arc length on POD accuracy from the satellite constellation design and the visible coverage of regional tracking stations. This experiment confirmed that when the observation time of regional stations is more than 48 hours, a valid arc length of regional POD, not less than 24 hours, can always be selected for each GPS satellite; the best selection can achieve a 3D accuracy about 0.3 m.
  • [1]
    Shi Chuang, Li Min, Lou Yidong, et al. Near Real-time Orbit Determination of Navigation Satellite Using RegionalTracking Network[J]. Geomatics and Information Science of Wuhan University, 2008,33(7):697-700(施闯,李敏,楼益栋,等.利用区域基准站进行导航卫星近实时精密定轨研究[J].武汉大学学报·信息科学版,2008,33(7):697-700)
    [2]
    Zhao Qile, Geng Tao, Li Junyi, et al. Regional Orbit Determination of Navigation Satellite Based on Priori Orbit Constraint Information[J]. Journal of Geodesy and Geodynamics, 2009,28(5):81-84(赵齐乐,耿涛,李俊义,等.历史轨道约束信息下的区域站GPS卫星轨道确定[J].大地测量学与地球动力学,2009,28(5):81-84)
    [3]
    Chen Hui, Du Ruilin, Zhao Qile, et al. Research on Orbit Determination of GPS by Use of Regional Network[J]. Journal of Geodesy and Geodynamics, 2011,31:86-89(陈慧杰,杜瑞林,赵齐乐, 等.利用区域跟踪网进行GPS定轨研究[J].大地测量学与地球动力学,2011,31:86-89)
    [4]
    Zhou Shanshi, Hu Xiaogong, Wu Bin, et al. Analysis of Precise Orbit Determination and Prediction Accuracy Based on Regional Tracking Network[J]. Sience China, 2010(40):800-808(周善石,胡小工,吴斌,等.区域监测网精密定轨与轨道预报精度分析[J].中国科学, 2010(40):800-808)
    [5]
    Geng Tao, Zhao Qile, Liu Jingnan, et al. Regional Orbit Determination of Navigation SatelliteBased on Global Priori Information[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4):491-494(耿涛,赵齐乐,刘经南,等.具有先验信息的区域增强系统卫星轨道确定方法[J].武汉大学学报·信息科学版,2010,35(4):491-494)
    [6]
    Ge M, Gendt G, Dick G, et al. Improving Carrier-Phase Ambiguity Resolution in Global GPS Network Solutions[J]. J Geod, 2005, 79:103-110
    [7]
    Dong D, Bock Y. Global Positioning Systemnetwork Analysis with Phase Ambiguity Resolution Applied to Crustal Deformation Studies in California[J]. J Geophys Res, 1989, 94:3949-3966
    [8]
    Blewitt G. Carrier Phase Ambiguity Resolutionfor the Global Positioning Systemapplied to Geodetic Baselines up to 2000km[J]. J Geophys Res,1989,94:10187-10203
    [9]
    Mervart L. Ambiguity Resolution Techniques in Geodetic and Geodynamic Applications of the Global Positioning System[D]. Berne:University of Berne, 1995
    [10]
    Kuang D, Bar-sever Y E, Bertiger W I, et al. GPS-assisted GLONASS Orbit Determination[J]. Journal of Geodesy, 2001,75:569-574
  • Related Articles

    [1]LONG En, LÜ Shouye, QU Xiaofei, MENG Gang, LAI Guangling, YANG Yuke. Height Inversion Model of Oil Tank Using Satellite Imagery with Same Name Arc Distance[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 411-418. DOI: 10.13203/j.whugis20210239
    [2]DONG Jian, PENG Rencan, LI Ning, LIU Guohui, TANG Lulu. Optimal Selection Algorithm of Territorial Sea Baseline Points with the Limitation of Baseline Length Threshold[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1473-1481. DOI: 10.13203/j.whugis20210191
    [3]LEI Xiangxu, SANG Jizhang, LI Zhenwei, CHEN Junyu, DU Jianli, HE Donglei. Association of Very-Short-Arc Angles Data for LEO Space Objects[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1526-1532. DOI: 10.13203/j.whugis20180386
    [4]WU Xiaolong, YANG Zhiqiang, GONG Yun. Present-day Crustal Deformation in Arc-Continent Collision Zone of the Southeastern Eurasia Plate[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 240-245, 253. DOI: 10.13203/j.whugis20170081
    [5]CAO Weiwei, ZHANG Hong, HE Jing, LAN Tian. Road Selection Considering Structural and Geometric Properties[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 520-524. DOI: 10.13203/j.whugis20140862
    [6]ZHAO Hu, LI Lin, GONG Jianya. Universal Map Projection Selection[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2): 244-247.
    [7]YAO Yibin. Theory and Realization of GPS Orbit Integration[J]. Geomatics and Information Science of Wuhan University, 2007, 32(6): 510-514.
    [8]XIAO Zhifeng, GONG Jianya. Hierarchical Topological Model for Large-Scale Streaming Network[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 252-255.
    [9]Du Daosheng, Shu Hong. A Temporal Geo-data Model with Timestamp on the Group of Synchronous Changing Data Items and the Segmented Topological Arc[J]. Geomatics and Information Science of Wuhan University, 1997, 22(2): 96-101.
    [10]Zhang Zuxun, Bao Xiuzhi, Cao Hui. Arc Spline and Arclet Processing[J]. Geomatics and Information Science of Wuhan University, 1994, 19(3): 189-193.
  • Cited by

    Periodical cited type(2)

    1. 王乐,黄观文,张勤,燕兴元,秦志伟,王利,崔博斌. 基于区域监测站的BDS定轨策略分析. 大地测量与地球动力学. 2018(05): 497-503+509 .
    2. 王乐,燕兴元,张勤,黄观文,秦志伟. 低轨卫星增强BDS卫星定轨技术探讨. 导航定位学报. 2017(04): 51-57 .

    Other cited types(5)

Catalog

    Article views (1324) PDF downloads (406) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return