Citation: | LÜ Pinji, LI Zhengyuan, SUN Lingli, LIN Jun, TANG Lei, NI Yipeng. Analysis of Impact of the Tonga Volcanic Eruption in 2022 on the Strain Observation of Chinese Mainland[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 927-933. DOI: 10.13203/j.whugis20220174 |
[1] |
胡羽丰, 李振洪, 王乐, 等. 2022年汤加火山喷发的综合遥感快速解译分析[J]. 武汉大学学报·信息科学版, 2022, 47(2): 242-251 doi: 10.13203/j.whugis20220050
Hu Yufeng, Li Zhenhong, Wang Le, et al. Rapid Interpretation and Analysis of the 2022 Eruption of Hunga Tonga-Hunga Ha'apai Volcano with Integrated Remote Sensing Techniques[J]. Geomatics and Information Science of Wuhan University, 2022, 47 (2): 242-251 doi: 10.13203/j.whugis20220050
|
[2] |
Amores A, Monserrat S, Marcos M, et al. Numerical Simulation of Atmospheric Lamb Waves Generated by the 2022 Hunga-Tonga Volcanic Eruption[J]. Geophysical Research Letters, 2022, DOI: 10.1029/2022GL098240
|
[3] |
Adam D. Tonga Volcano Eruption Created Puzzling Ripples in Earth's Atmosphere[J]. Nature, 2022, 601(7894): 497 doi: 10.1038/d41586-022-00127-1
|
[4] |
Yuen D A, Scruggs M A, Spera F J, et al. Under the Surface: Pressure-Induced Planetary-Scale Waves, Volcanic Lightning, and Gaseous Clouds Caused by the Submarine Eruption of Hunga TongaHunga Ha'apai Volcano[J]. Earthquake Research Advances, 2022: 100134
|
[5] |
中国地震局. 地震地壳形变观测方法: 洞体应变观测(DB/T46-2012)[S]. 北京: 地震出版社, 2012
China Earthquake Agency. The Method of Earthquake-Related Crustal Deformation Monitoring-Crustal Strain Observation in Horizontal Tunnel (DB/T46-2012)[S]. Beijing: Seismological Press, 2012
|
[6] |
中国地震局. 地震地壳形变观测方法: 钻孔应变观测(DB/T54-2013)[S]. 北京: 地震出版社, 2013
China Earthquake Agency. The Method of Earthquake-Related Crustal Deformation Monitoring-Strain Monitoring in Borehole(DB/T54-2013)[S]. Beijing: Seismological Press, 2013
|
[7] |
宁津生, 汪海洪, 罗志才. 小波分析在大地测量中的应用及其进展[J]. 武汉大学学报·信息科学版, 2004, 29(8): 659-663 http://ch.whu.edu.cn/article/id/4440
Ning Jinsheng, Wang Haihong, Luo Zhicai. Applications of Wavelet Analysis in Geodesy and Its Progress [J]. Geomatics and Information Science of Wuhan University, 2004, 29(8): 659-663 http://ch.whu.edu.cn/article/id/4440
|
[8] |
Hines C O. Gravity Waves in the Atmosphere[J]. Nature, 1972, 239(5367): 73-78 doi: 10.1038/239073a0
|
[9] |
程巍, 滕鹏晓, 吕君, 等. 汤加火山喷发所产生的次声波[J]. 声学学报, 2022, 47(2): 289-291 https://www.cnki.com.cn/Article/CJFDTOTAL-XIBA202202014.htm
Cheng Wei, Teng Pengxiao, Lü Jun, et al. On the Infrasonic Waves Generated from the Volcano Eruption in Tonga[J]. Acta Acustica, 2022, 47(2): 289-291 https://www.cnki.com.cn/Article/CJFDTOTAL-XIBA202202014.htm
|
[10] |
杨小林, 危自根, 杨锦玲, 等. 飑线对定点地形变观测的影响特征与机理: 以陕西关中盆地为例[J]. 中国地震, 2019, 35(3): 465-475 doi: 10.3969/j.issn.1001-4683.2019.03.005
Yang Xiaolin, Wei Zigen, Yang Jinling, et al. Ground Deformation Induced by a Strong Squall Line: A Case Study in the Weihe Basin, Shaanxi Province[J]. Earthquake Research in China, 2019, 35(3): 465-475 doi: 10.3969/j.issn.1001-4683.2019.03.005
|
[1] | LIU Jiping, CAO Yuanhui, WANG Yong, REN Fu, DU Qingyun. Evaluating the Accessibility of Medical Services in the 15 min Life Circle Using Internet Pan-Map Resources: A Case Study in Shanghai[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12): 2054-2063. DOI: 10.13203/j.whugis20220565 |
[2] | ZHAO Zhongguo, ZHANG Feng, ZHENG Jianghua. Evaluation of Landslide Susceptibility by Multiple Adaptive Regression Spline Method[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3): 442-450. DOI: 10.13203/j.whugis20190136 |
[3] | WANG Yafei, YUAN Hui, CHEN Biyu, LI Qingquan, WAN Meng, WANG Jiayao, GUO Jianzhong. Measuring Place-Based Accessibility Under Travel Time Uncertainty[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1723-1729. DOI: 10.13203/j.whugis20180015 |
[4] | LU Yonghua, LI Shuang. Spatial Accessibility of Indoor Emergency Shelters Based on Improved G2SFCA in Shenzhen City[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1391-1398. DOI: 10.13203/j.whugis20180456 |
[5] | LIU Haiyan, PANG Xiaoping, WANG Yue, LI Zhongxiang. Quantitative Research for Site-selection of Antarctic Year-round Research Stations Based on Logistic Regression[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 390-394. DOI: 10.13203/j.whugis20150260 |
[6] | FU Zhongliang, YANG Yuanwei, GAO Xianjun, ZHAO Xingyuan, LU Yuefeng, CHEN Shaoqin. Road Networks Matching Using Multiple Logistic Regression[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 171-177. DOI: 10.13203/j.whugis20150112 |
[7] | Lu Jun, Dai Wujiao, Zhang Zhetao. Modeling Dam Deformation Using Varying Coefficient Regression[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 139-142. |
[8] | NONG Yu, WANG Kun, DU Qingyun. Modeling Land Use Change Using Multinomial Logistic Regression[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 743-746. |
[9] | FANG Zhixiang, LI Qingquan, SHAW Shihlung. Representation of Location-Specific Space-Time Accessibility Based on Time Geography Framework[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1091-1095. |
[10] | Wu Zian. The Independent Variablas-snooping in the Regression Analysis of Dam Deformation[J]. Geomatics and Information Science of Wuhan University, 1993, 18(1): 20-26. |