LÜ Pinji, LI Zhengyuan, SUN Lingli, LIN Jun, TANG Lei, NI Yipeng. Analysis of Impact of the Tonga Volcanic Eruption in 2022 on the Strain Observation of Chinese Mainland[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 927-933. DOI: 10.13203/j.whugis20220174
Citation: LÜ Pinji, LI Zhengyuan, SUN Lingli, LIN Jun, TANG Lei, NI Yipeng. Analysis of Impact of the Tonga Volcanic Eruption in 2022 on the Strain Observation of Chinese Mainland[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 927-933. DOI: 10.13203/j.whugis20220174

Analysis of Impact of the Tonga Volcanic Eruption in 2022 on the Strain Observation of Chinese Mainland

Funds: 

The National Natural Science Foundation of China 42174177

The National Natural Science Foundation of China 41974018

The National Natural Science Foundation of China 41974096

The National Natural Science Foundation of China 41931074

the Earthquake Situation Tracking Project of China Earthquake Administration 2020020204

More Information
  • Author Bio:

    LÜ Pinji, master, senior engineer, specializes in crustal deformation and earthquake prediction. E-mail: 510847097@qq.com

  • Corresponding author:

    LI Zhengyuan, PhD, professor. E-mail: zhyli05@163.com

  • Received Date: April 24, 2022
  • Available Online: May 25, 2022
  • Published Date: June 04, 2022
  •   Objectives  The Tonga volcano erupted violently on January 15th, 2022, which produced atmospheric gravity waves affecting around the world, and was clearly recorded by all ground strain observation stations in Chinese mainland with the distance from 8 736 km to 12 758 km.
      Methods  The wavelet analysis method is applied to systematically analyze the spatial-temporal response and frequency characteristics of the data recorded by nearly 200 ground strain observations in China.
      Results  The results show that the duration of change is about 1.5 hours, in which the strongest energy change is occurred at the first 40 minutes. The average amplitude of surface strain is about 186×10-10, showing a single pulse as rise and fall change, and the patterns have highly consistency with Lamb wave propagation properties. The average velocity of event propagation is 310 m/s, which is consistent with the propagation velocity of atmospheric gravity waves. Most stations also record the effect of atmospheric gravity wave signals on the surface as they arrive twice around the Earth.
      Conclusions  It is the first time to record the traces of atmospheric gravity waves acting on the surface through a large scale high-precision ground strain meters and it is helpful to understand the mechanism of interaction between crustal movement and atmospheric sphere.
  • [1]
    胡羽丰, 李振洪, 王乐, 等. 2022年汤加火山喷发的综合遥感快速解译分析[J]. 武汉大学学报·信息科学版, 2022, 47(2): 242-251 doi: 10.13203/j.whugis20220050

    Hu Yufeng, Li Zhenhong, Wang Le, et al. Rapid Interpretation and Analysis of the 2022 Eruption of Hunga Tonga-Hunga Ha'apai Volcano with Integrated Remote Sensing Techniques[J]. Geomatics and Information Science of Wuhan University, 2022, 47 (2): 242-251 doi: 10.13203/j.whugis20220050
    [2]
    Amores A, Monserrat S, Marcos M, et al. Numerical Simulation of Atmospheric Lamb Waves Generated by the 2022 Hunga-Tonga Volcanic Eruption[J]. Geophysical Research Letters, 2022, DOI: 10.1029/2022GL098240
    [3]
    Adam D. Tonga Volcano Eruption Created Puzzling Ripples in Earth's Atmosphere[J]. Nature, 2022, 601(7894): 497 doi: 10.1038/d41586-022-00127-1
    [4]
    Yuen D A, Scruggs M A, Spera F J, et al. Under the Surface: Pressure-Induced Planetary-Scale Waves, Volcanic Lightning, and Gaseous Clouds Caused by the Submarine Eruption of Hunga TongaHunga Ha'apai Volcano[J]. Earthquake Research Advances, 2022: 100134
    [5]
    中国地震局. 地震地壳形变观测方法: 洞体应变观测(DB/T46-2012)[S]. 北京: 地震出版社, 2012

    China Earthquake Agency. The Method of Earthquake-Related Crustal Deformation Monitoring-Crustal Strain Observation in Horizontal Tunnel (DB/T46-2012)[S]. Beijing: Seismological Press, 2012
    [6]
    中国地震局. 地震地壳形变观测方法: 钻孔应变观测(DB/T54-2013)[S]. 北京: 地震出版社, 2013

    China Earthquake Agency. The Method of Earthquake-Related Crustal Deformation Monitoring-Strain Monitoring in Borehole(DB/T54-2013)[S]. Beijing: Seismological Press, 2013
    [7]
    宁津生, 汪海洪, 罗志才. 小波分析在大地测量中的应用及其进展[J]. 武汉大学学报·信息科学版, 2004, 29(8): 659-663 http://ch.whu.edu.cn/article/id/4440

    Ning Jinsheng, Wang Haihong, Luo Zhicai. Applications of Wavelet Analysis in Geodesy and Its Progress [J]. Geomatics and Information Science of Wuhan University, 2004, 29(8): 659-663 http://ch.whu.edu.cn/article/id/4440
    [8]
    Hines C O. Gravity Waves in the Atmosphere[J]. Nature, 1972, 239(5367): 73-78 doi: 10.1038/239073a0
    [9]
    程巍, 滕鹏晓, 吕君, 等. 汤加火山喷发所产生的次声波[J]. 声学学报, 2022, 47(2): 289-291 https://www.cnki.com.cn/Article/CJFDTOTAL-XIBA202202014.htm

    Cheng Wei, Teng Pengxiao, Lü Jun, et al. On the Infrasonic Waves Generated from the Volcano Eruption in Tonga[J]. Acta Acustica, 2022, 47(2): 289-291 https://www.cnki.com.cn/Article/CJFDTOTAL-XIBA202202014.htm
    [10]
    杨小林, 危自根, 杨锦玲, 等. 飑线对定点地形变观测的影响特征与机理: 以陕西关中盆地为例[J]. 中国地震, 2019, 35(3): 465-475 doi: 10.3969/j.issn.1001-4683.2019.03.005

    Yang Xiaolin, Wei Zigen, Yang Jinling, et al. Ground Deformation Induced by a Strong Squall Line: A Case Study in the Weihe Basin, Shaanxi Province[J]. Earthquake Research in China, 2019, 35(3): 465-475 doi: 10.3969/j.issn.1001-4683.2019.03.005
  • Related Articles

    [1]LIU Jiping, CAO Yuanhui, WANG Yong, REN Fu, DU Qingyun. Evaluating the Accessibility of Medical Services in the 15 min Life Circle Using Internet Pan-Map Resources: A Case Study in Shanghai[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12): 2054-2063. DOI: 10.13203/j.whugis20220565
    [2]ZHAO Zhongguo, ZHANG Feng, ZHENG Jianghua. Evaluation of Landslide Susceptibility by Multiple Adaptive Regression Spline Method[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3): 442-450. DOI: 10.13203/j.whugis20190136
    [3]WANG Yafei, YUAN Hui, CHEN Biyu, LI Qingquan, WAN Meng, WANG Jiayao, GUO Jianzhong. Measuring Place-Based Accessibility Under Travel Time Uncertainty[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1723-1729. DOI: 10.13203/j.whugis20180015
    [4]LU Yonghua, LI Shuang. Spatial Accessibility of Indoor Emergency Shelters Based on Improved G2SFCA in Shenzhen City[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1391-1398. DOI: 10.13203/j.whugis20180456
    [5]LIU Haiyan, PANG Xiaoping, WANG Yue, LI Zhongxiang. Quantitative Research for Site-selection of Antarctic Year-round Research Stations Based on Logistic Regression[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 390-394. DOI: 10.13203/j.whugis20150260
    [6]FU Zhongliang, YANG Yuanwei, GAO Xianjun, ZHAO Xingyuan, LU Yuefeng, CHEN Shaoqin. Road Networks Matching Using Multiple Logistic Regression[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 171-177. DOI: 10.13203/j.whugis20150112
    [7]Lu Jun, Dai Wujiao, Zhang Zhetao. Modeling Dam Deformation Using Varying Coefficient Regression[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 139-142.
    [8]NONG Yu, WANG Kun, DU Qingyun. Modeling Land Use Change Using Multinomial Logistic Regression[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 743-746.
    [9]FANG Zhixiang, LI Qingquan, SHAW Shihlung. Representation of Location-Specific Space-Time Accessibility Based on Time Geography Framework[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1091-1095.
    [10]Wu Zian. The Independent Variablas-snooping in the Regression Analysis of Dam Deformation[J]. Geomatics and Information Science of Wuhan University, 1993, 18(1): 20-26.
  • Cited by

    Periodical cited type(28)

    1. 董威威,蒋贵国,梁小雅,钟孟君,程珍旎. 基于改进引力模型的成渝地区双城经济圈城市经济联系网络演变研究. 四川师范大学学报(自然科学版). 2025(01): 82-93 .
    2. 詹庆明,李轩,樊智宇. 利用非负矩阵分解识别县域人群活动时空特征. 测绘地理信息. 2024(02): 108-113 .
    3. 李静波,关雪峰,曾星,杨昌兰,邢巍然,吴华意. 长株潭城市群建成区时空扩展特征及驱动力分析. 武汉大学学报(信息科学版). 2024(06): 1028-1039 .
    4. 何明卫,赵庆文,李健波. 组团城市通勤流网络特征及影响因素分析——以贵阳市为例. 昆明理工大学学报(自然科学版). 2024(04): 249-260 .
    5. 胡秋实,李锐,吴华意,刘朝辉,蔡晶. 顾及城市场景变化的人口分析单元表达. 武汉大学学报(信息科学版). 2024(10): 1788-1799 .
    6. 薛山,廖一兰,李春林,胡艺. 不同人口流动模式下城市传染病时空传播模型适用性研究. 地球信息科学学报. 2023(01): 208-222 .
    7. 张伟丽,郝智娟,王伊斌,魏瑞博. 城市群人口流动空间网络及影响因素. 地理科学. 2023(01): 72-81 .
    8. 张伟丽,郝智娟,王伊斌,魏瑞博. 城市群人口流动空间网络及影响因素. 地理科学. 2023(02): 72-81 .
    9. 郭联欢,洪昕晨. 城市社会感知研究与应用进展. 中外建筑. 2023(06): 12-17 .
    10. 严雪心,周婕,盛富斌,牛强. 大城市近郊区产业类型对就业人口流动的差异化影响——以武汉市为例. 经济地理. 2023(10): 63-74 .
    11. 真诗泳,林钦贤,张露丹,李嘉政,林玉英,陈诚,潘自宝,胡喜生. 基于多源数据的城市内部空间交互特征:以福州市主城区为例. 科学技术与工程. 2023(35): 14937-14946 .
    12. 赵凯旭,张帅兵,黄晓军,李恩龙,武风奇. 新冠疫情管控期间西安市人口分布演变及影响因素探测——基于多源时空大数据视角. 人口与发展. 2022(01): 140-150 .
    13. 甄峰,李哲睿,谢智敏. 基于人口流动的城市内部空间结构特征及其影响因素分析——以南京市为例. 地理研究. 2022(06): 1525-1539 .
    14. 龚丽丽,蔡忠亮,李伯钊,牛彦芬,苏世亮. 街道尺度下城市居民出行特征分析. 测绘地理信息. 2022(S1): 69-73 .
    15. 段艳慧,郭伟,赵学胜,张晓莹,张冰瑞. 基于Landsat影像和统计数据的北京市人口密度制图. 北京测绘. 2022(08): 1096-1101 .
    16. 赵虎,尚铭宇,张悦,张浩楠,李鹏乾. 区域中心城市就业空间格局及优化策略研究——以山东省青岛市为例. 山东建筑大学学报. 2022(06): 61-69 .
    17. 孙艳玲,李俊蓉,张夏坤,裴新蕊,刘子菲,郭鹏. 基于昼夜人口变化的应急避难场所可达性评价——以天津市西青区为例. 安全与环境学报. 2022(06): 3342-3349 .
    18. 张爱民. 基于大数据的江西省就业收入和社会保障研究. 科技广场. 2022(05): 71-78 .
    19. 何建华,覃荣诺,丁愫,李江,岳桥兵. 基于乡村宜居性和人口流动网络特征的农村居民点重构. 武汉大学学报(信息科学版). 2021(03): 402-409 .
    20. 罗桑扎西,甄峰,张姗琪. 复杂网络视角下的城市人流空间概念模型与研究框架. 地理研究. 2021(04): 1195-1208 .
    21. 季航宇,蔡忠亮,姜莉莉,李桂娥,李伯钊. 出租车出行的空间不平等及其与人口结构的关联. 武汉大学学报(信息科学版). 2021(05): 766-776 .
    22. 刘正廉,桂志鹏,吴华意,秦昆,吴京航,梅宇翱,赵晶. 融合建筑物与POI数据的精细人口空间化研究. 测绘地理信息. 2021(05): 102-106 .
    23. 付诗航,刘耀林,方莹,杨孝军,刘艳芳,彭明军. 基于SCD的公共交通换乘时空模式——以武汉市为例. 武汉大学学报(信息科学版). 2020(07): 1089-1098 .
    24. 甘田,刘鼎. 基于手机数据的职住空间关系研究——以重庆市主城区为例. 城市交通. 2020(05): 36-44+119 .
    25. 刘艳芳,方飞国,刘耀林,罗名海. 时空大数据在空间优化中的应用. 测绘地理信息. 2019(03): 7-20 .
    26. 杨朗,周丽娜,张晓明. 基于手机信令数据的广州市职住空间特征及其发展模式探究. 城市观察. 2019(03): 87-96 .
    27. 花磊,彭宏杰,杨秀锋,刘秀芸,袁绪英,吴宜进. 基于腾讯位置大数据的长江经济带人口流动空间分析. 华中师范大学学报(自然科学版). 2019(05): 815-820 .
    28. 宋小冬,杨钰颖,钮心毅. 上海典型产业园区职工居住地、通勤距离的变化及影响机制. 城市发展研究. 2019(12): 53-61 .

    Other cited types(17)

Catalog

    Article views PDF downloads Cited by(45)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return