CUI Wei, XIE Enfa, ZHANG Guike, LI Hongbi. Identification of Isolated Dangerous Rock Mass in High and Steep Slope Using Unmanned Aerial Vehicle[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 836-843. DOI: 10.13203/j.whugis20190186
Citation: CUI Wei, XIE Enfa, ZHANG Guike, LI Hongbi. Identification of Isolated Dangerous Rock Mass in High and Steep Slope Using Unmanned Aerial Vehicle[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 836-843. DOI: 10.13203/j.whugis20190186

Identification of Isolated Dangerous Rock Mass in High and Steep Slope Using Unmanned Aerial Vehicle

Funds: 

The Yalong River Joint Foundation of the National Natural Science Foundation of China U1765106

More Information
  • Author Bio:

    CUI Wei, PhD, associate professor, specializes in geotechnical engineering. E-mail: cuiwei@tju.edu.cn

  • Received Date: May 04, 2020
  • Published Date: June 04, 2021
  •   Objectives  The dangerous rock masses on the high steep slope are easy to lose stability, which threatens the safety of water conservancy projects. Therefore, the rapid, accurate and convenient identification of dangerous rock mass on the high steep slope is significant to the construction of hydropower projects. As a new equipment of surface observation, unmanned aerial vehicle (UAV) can be equipped with laser radar(LiDAR) to obtain high-density and high-precision point cloud data of large areas on high steep slopes.
      Methods  A radar laser scan of the high steep slope near Lianghekou Hydropower station is carried out by using UAV, and three areas are scanned, including one on the left bank and two on the right bank. Firstly, on the basis of the ground points extracted from the point cloud data were decomposed and smoothed, and then the edge points are obtained through geometric features. After that, the point cloud is clustered based on the edge points to form the candidate object. Finally, we generate the digital elevation model, by which we can calculate the spatial feature of the object to extract the dangerous rock mass.
      Results  In the three areas explored in this research, a total of 47 potentially dangerous rock masses are detected. The above identification method is used to detect dangerous rock mass, and 16 dangerous rock masses are found. 5 dangerous rock masses are detected in scanning areas 1 and 2, and 6 dangerous rock masses are detected in scanning area 3.
      Conclusions  UAV equipped with LiDAR can obtain the spatial coordinate data of large area on high steep slope accurately, and thus the spatial information of isolated dangerous rock mass can be obtained.Combined with the area, maximum height difference and volume, dangerous rock mass can be extracted quickly and effectively. Engineering example shows that our proposed method has strong applicability and reliability; and it can be used to quickly identify isolated dangerous rock mass on high steep slope.
  • [1]
    周云涛. 三峡库区危岩稳定性断裂力学计算方法[J]. 岩土力学, 2016, 37(1): 495-499 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1065.htm

    Zhou Yuntao. A Method for Calculating the Stability of Unstable Rocks on Three Gorges Reservoir by Fracture Mechanics [J]. Rock and Soil Mechanics, 2016, 37(1): 495-499 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1065.htm
    [2]
    李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报·信息科学版, 2014, 39(5): 505-511 doi: 10.13203/j.whugis20140045

    Li Deren, Li Ming. Research Advance and Application Prospect of Unmanned Aerial Vehicle Remote Sensing System[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 505-511 doi: 10.13203/j.whugis20140045
    [3]
    贾曙光, 金爱兵, 赵怡晴. 无人机摄影测量在高陡边坡地质调查中的应用[J]. 岩土力学, 2018, 39(3): 1 130-1 136 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803044.htm

    Jia Shuguang, Jin Aibing, Zhao Yiqing. Application of UAV Oblique Photogrammetry in the Field of Geology Survey at the High and Steep Slope[J]. Rock and Soil Mechanics, 2018, 39(3): 1 130- 1 136 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803044.htm
    [4]
    Glenn N F, Streutker D R, Chadwick D J, et al. Analysis of LiDAR -Derived Topographic Information for Characterizing and Differentiating Landslide Morphology and Activity[J]. Geomorphology, 2005, 73 (1) : 131-148
    [5]
    Ardizzone F, Cardinali M, Galli M, et al. Identification and Mapping of Recent Rainfall-Induced Landslides Using Elevation Data Collected by Airborne LiDAR[J]. Natural Hazards and Earth System Sciences, 2007(7) : 637-650 http://www.tandfonline.com/servlet/linkout?suffix=CIT0005&dbid=16&doi=10.1080%2F10106049.2017.1316779&key=10.5194%2Fnhess-7-637-2007
    [6]
    Sekiguchi T, Sato H P. Mapping of Micro Topography Usingairborne Laser Scanning[J]. Landslides, 2004, 1(3) : 195-202 doi: 10.1007/s10346-004-0021-5
    [7]
    刘圣伟, 郭大海, 陈伟涛, 等. 机载激光雷达技术在长江三峡工程库区滑坡灾害调查和监测中的应用研究[J]. 中国地质, 2012, 39(2): 507-517 doi: 10.3969/j.issn.1000-3657.2012.02.021

    Liu Shengwei, Guo Dahai, Chen Weitao, et al. The Application of Airborne LiDAR Technology in Landslide Investigation and Monitoring of Three Gorges Reservoir Area[J]. Geology in China, 2012, 39(2): 507-517 doi: 10.3969/j.issn.1000-3657.2012.02.021
    [8]
    Pipaud I, Lehmkuh F. Object-Based Delineation and Classification of Alluvial Fans by Application of Mean-Shift Segmentation and Support Vector Machines[J]. Geomorphology, 2017, 293: 178-200 doi: 10.1016/j.geomorph.2017.05.013
    [9]
    Feizizadeh B, Blaschke T, Tiede D, et al. Evaluating Fuzzy Operators of an Object-Based Image Analysis for Detecting Landslides and Their Changes[J]. Geomorphology, 2017, 85(1): 240-254 http://www.sciencedirect.com/science/article/pii/S0169555X17302623
    [10]
    刘昌军, 张顺福, 丁留谦, 等. 基于激光扫描的高边坡危岩体识别及锚固方法研究[J]. 岩石力学与工程学报, 2012, 31(10): 2 139-2 145 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201210021.htm

    Liu Changjun, Zhang Shunfu, Ding Liuqian, et al. Identification of Dangerous Rock Mass of High Slope and Study of Anchoring Method Based on Laser Scanning[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 2 139-2 145 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201210021.htm
    [11]
    顾留碗, 王春, 李鹏, 等. 利用DEM提取山顶点精度研究[J]. 武汉大学学报·信息科学版, 2016, 41(1): 131-135 doi: 10.13203/j.whugis20130386

    Gu Liuwan, Wang Chun, Li Peng, et al. Research on Mountain Top Extraction Accuracy Based on DEM[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 131-135 doi: 10.13203/j.whugis20130386
    [12]
    马先明, 李永树, 谢嘉丽. 利用双边滤波法进行点云去噪的试验与分析[J]. 测绘通报, 2017(2): 87-89 https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201702021.htm

    Ma Xianming, Li Yongshu, Xie Jiali. Experiment and Analysis of Point Cloud Denoising Using Bilateral Filtering Method[J]. Bulletin of Surveying and Mapping, 2017(2): 87-89 https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201702021.htm
    [13]
    Zhang Wuming, Qi Jianbo, Wan Peng, et al. An Easy-to-Use Airorne LiDAR Data Filtering Method Based on Cloth Simulation[J]. Remote Sensing, 2016, DOI: 10.3390/rs8060501
    [14]
    Hoppe H, De Rose T, Duchamp T, et al. Surface Reconstruction from Unorganized Points[J]. Computer Graphics, 1992, 26(2): 71-78 doi: 10.1145/142920.134011
    [15]
    Pauly M, Gross M. Efficient Simplification of Point Sampled Surfaces[C]//IEEE Proceedings of Visualization, Boston, USA, 2002
    [16]
    Song H, Feng H Y, Ouyang D. Automatic Detection of Tangential Discontinuities in Point Cloud Data[J]. Journal of Computing and Information Science in Engineering, 2008, 8(2): 1-10
  • Cited by

    Periodical cited type(15)

    1. BI Rui,GAN Shu,YUAN Xiping,LI Kun,LI Raobo,LUO Weidong,CHEN Cheng,GAO Sha,HU Lin,ZHU Zhifu. Detection and analysis of landslide geomorphology based on UAV vertical photogrammetry. Journal of Mountain Science. 2024(04): 1190-1214 .
    2. 徐光平,刘羊. 广州市番禺莲花山岩质陡坡危石崩塌灾害研究. 广东土木与建筑. 2024(08): 34-38+43 .
    3. 洪勃,唐亚明,冯卫,李政国,潘学树,冯凡,周永恒,尹春旺. 基于3D实景模型和AHP边坡危险性评价系统的应用:以沿黄公路吴堡–永和段为例. 西北地质. 2024(06): 218-233 .
    4. 吴江昊,姜涛. 基于机载激光雷达的高陡边坡孤立危岩体识别方法. 经纬天地. 2024(06): 19-23+55 .
    5. 周林辉. 基于无人机影像建模的危岩体信息提取与风险评估研究. 工程勘察. 2023(06): 66-72 .
    6. 李恒,杜岩,谢谟文,张金戈,蒋宇静,李博. 一种滑移型危岩体的力学判识方法. 工程科学学报. 2023(09): 1441-1449 .
    7. 杨波,付伟锋. 机载激光雷达技术在不规则高边坡面积测量中的应用. 广东水利水电. 2023(06): 89-93 .
    8. 苏国韶,李战,范秋雁,郑志. 基于无人机遥感快速建模的危岩体三维离散元计算方法. 广西大学学报(自然科学版). 2023(03): 641-650 .
    9. 夏雄彬,谯立家,许万忠. 基于机载LiDAR及无人机影像的高位危岩体调查和成因分析. 长江科学院院报. 2023(09): 188-194 .
    10. 庞鑫,袁明,卢渊,杜文杰,万道春,李得,丁海锋,付晓东. 基于无人机LiDAR仿地飞行技术的高陡边坡危岩体快速识别方法. 地质科技通报. 2023(06): 21-30 .
    11. 王明辉,曹熙平,谯立家. 危岩体精细调查与崩塌过程三维场景模拟——以西南某水电站高边坡为例. 中国地质灾害与防治学报. 2023(06): 86-96 .
    12. 周建国,罗超,彭朵. 微型无人机辅助的三角高程测量方法. 测绘通报. 2022(06): 71-75 .
    13. 陶贤富. 基于倾斜摄影测量技术的地灾滑坡体体积计算. 内蒙古煤炭经济. 2022(11): 7-9 .
    14. 江晓涛,雷红富,赵杰,杨磊,戴仕贵. 地震监测与预警技术在水库高陡边坡安全监测中的应用与研究. 大坝与安全. 2022(04): 28-35 .
    15. 赵焰,曹聿铭,黄鹤. 基于车载激光点云的高精地图矢量化成图. 测绘通报. 2021(12): 105-109+114 .

    Other cited types(8)

Catalog

    Article views (1194) PDF downloads (140) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return