GUO Jianfeng. MAD Estimate of Scale Factor and Its Applications in Measurement Adjustment[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1636-1640. DOI: 10.13203/j.whugis20190166
Citation: GUO Jianfeng. MAD Estimate of Scale Factor and Its Applications in Measurement Adjustment[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1636-1640. DOI: 10.13203/j.whugis20190166

MAD Estimate of Scale Factor and Its Applications in Measurement Adjustment

Funds: 

The National Natural Science Foundation of China 41674020

The National Natural Science Foundation of China 40874007

the Henan Key Laboratory of Intelligent Public Opinion Analysis 

More Information
  • Author Bio:

    GUO Jianfeng, PhD, specializes in geodesy and GNSS data processing. E-mail: jianfeng.guo@gmail.com

  • Received Date: April 17, 2020
  • Published Date: November 04, 2021
  •   Objectives  The least-squares method is very sensitive to outliers, and the adjustment outputs will usually be unacceptable when some of the observations are contaminated. Selection of appropriate statistical tests plays a pivotal role both in robust estimation and conventional outlier detection procedures.
      Methods  The MAD (median absolute deviation) estimate of scale factor in the univariate case is discussed firstly. Determination of the Fisher-consistency factor is described for Gaussian normal distribution. Robust estimates of scale factor in linear adjustment model are addressed based on standardized least-squares residuals and the uniformly most powerful test statistics, respectively. Both of them can be used for constructing statistical tests, to identify the potential outlying observations, and therefore their deterioration effect will be mitigated. For illustrative purpose, Monte Carlo simulations in GPS network adjustment scenario are performed.
      Results  Numerical results show that the MAD-based estimate of scale factor is robust and works well in accuracy assessment for adjustment outputs.
      Conclusions  Explicit formula for estimating the scale factor, the MAD is a very robust scale estimator and has low computation complexity. It is therefore appropriate to use the MAD for adjustment computations and accuracy assessment when outliers are present.
  • [1]
    Huber P J. Robust Statistics[M]. New York: Wiley, 1981
    [2]
    周江文, 黄幼才, 杨元喜, 等. 抗差最小二乘法[M]. 武汉: 华中理工大学出版社, 1997

    Zhou Jiangwen, Huang Youcai, Yang Yuanxi, et al. Robust Least Squares Method[M]. Wuhan: Huazhong University of Science and Technology Press, 1997
    [3]
    Wolf P R, Ghilani C D. Adjustment Computations: Statistics and Least Squares in Surveying and GIS [M]. New York: Wiley, 1997
    [4]
    Koch K R. Parameter Estimation and Hypothesis Testing in Linear Models[M]. Berlin: SpringerVerlag, 1999
    [5]
    Leick A, Rapoport L, Tatarnikov D. GPS Satellite Surveying[M]. New York: Wiley, 2015
    [6]
    Barnett V, Lewis T. Outliers in Statistical Data [M]. New York: Wiley, 1994
    [7]
    Baarda W. A Testing Procedure for Use in Geodetic Networks[J]. Netherlands Geodetic Commission, Publications on Geodesy, 1968, 2(5): 1-97
    [8]
    Pope A J. The Statistics of Residuals and the Detection of Outliers[R]. Rockville: NOAA Technical Report, 1976
    [9]
    Chatterjee S, Hadi A S. Sensitivity Analysis in Linear Regression[M]. New York: Wiley, 1988
    [10]
    Kargoll B. On the Theory and Application of Model Misspecification Tests in Geodesy[D]. Bonn: University of Bonn, 2007
    [11]
    鲁铁定, 杨元喜, 周世健. 均值漂移模式几种粗差探测法的MDB比较[J]. 武汉大学学报·信息科学版, 2019, 44(2): 185-192 doi: 10.13203/j.whugis20140330

    Lu Tieding, Yang Yuanxi, Zhou Shijian. Comparative Analysis of MDB for Different Outliers Detection Methods[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 185- 192 doi: 10.13203/j.whugis20140330
    [12]
    王海涛, 欧吉坤, 袁运斌, 等. 估计观测值粗差三种方法的等价性讨论[J]. 武汉大学学报·信息科学版, 2013, 38(2): 162-166 http://ch.whu.edu.cn/article/id/6096

    Wang Haitao, Ou Jikun, Yuan Yunbin, etal. On Equivalence of Three Estimators for Outliers in Linear Model[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 162- 166 http://ch.whu.edu.cn/article/id/6096
    [13]
    Hampel F R. The Influence Curve and its Role in Robust Estimation[J]. Journal of the American Statistical Association, 1974, 69(346): 383-393 doi: 10.1080/01621459.1974.10482962
    [14]
    Rousseeuw P J, Croux C. Alternatives to the Median Absolute Deviation[J]. Journal of the American Statistical Association, 1993, 88(424): 1 273-1 283 doi: 10.1080/01621459.1993.10476408
    [15]
    郭建锋. 模型误差理论若干问题研究及其在GPS数据处理中的应用[D]. 武汉: 中科院测量与地球物理研究所, 2007

    Guo J. Theory of Model Errors and its Applications in GPS Data Processing[D]. Wuhan: Institute of Geodesy and Geophysics of Chinese Academy of Sciences, 2007
    [16]
    Guo J, Ou J, Wang H. Robust Estimation for Correlated Observations: Two Local Sensitivity-based Downweighting Strategies[J]. Journal of Geodesy, 2010, 84(4): 243-250 doi: 10.1007/s00190-009-0361-y
    [17]
    Guo J. A Note on The Conventional Outlier Detection Test Procedures[J]. Boletim Ciencias Geodesicas, 2015, 21(2): 433-440 doi: 10.1590/S1982-21702015000200024
    [18]
    Snow K B, Schaffrin B. Three- Dimensional Outlier Detection for GPS Networks and Their Densification via the BLIMPBE Approach[J]. GPS Solutions, 2003, 7(2): 130-139 doi: 10.1007/s10291-003-0058-2
    [19]
    Yang Y, Song L, Xu T. Robust Estimator for Correlated Observations Based on Bifactor Equivalent Weights[J]. Journal of Geodesy, 2002, 76(6): 353-358 doi: 10.1007%2Fs00190-002-0256-7.pdf
  • Related Articles

    [1]WU Chunjun, SUN Yueqiang, WANG Xianyi, BAI Weihua, MENG Xiangguang, DU Qifei, WANG Dongwei, LI Fu. Adjustment of GPS Flex Power and Its Interference Analysis Based on FY-3D Satellite[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 687-693. DOI: 10.13203/j.whugis20200569
    [2]Yin Gang, Zhang Yingtang, Shi Zhiyong, Li Zhining. Real-time Compensation Method of Magnetic Heading Perturbations Based on Magnetic Anomaly Inversion[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 978-982. DOI: 10.13203/j.whugis20140260
    [3]HUANG Shuqiang, FU Zhongliang. A Channel Assignment Algorithm Based on Interference Avoiding in Wireless Mesh Networks[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 248-251.
    [4]ZHANG Bo, ZHANG Hong, WANG Ziwei, WANG Chao. Electromagnetic Model Used for Building Height Retrieval by Single High Resolution SAR Image[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1460-1463.
    [5]GUO Wenfei, ZHENG Jiansheng, ZHANG Tisheng, LI Chaoran. A Space-Frequency Adaptive Processing Algorithm for GPS Radio Frequency Interference Suppression[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1348-1352.
    [6]HAN Tianzhu, CAO Jianping, LU Mingquan. Anti-interference Antenna Based Near-Far Effect Mitigation Method[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1222-1225.
    [7]ZHAO Yang, LI Guangxia, CHANG Jiang, LIU Yun. Research on Electromagnetic Environment of Satellite Navigation in S-band[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1213-1217.
    [8]YIN Hui, ZHANG Xiaohong, ZHANG Xiaowu, LIU Xingfa. Interference Analysis to Aerial Flight Caused by UHV Lines Using Airborne GPS[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 774-777.
    [9]HUANG Motao, ZHAI Guojun, OUYANG Yongzhong, REN Laiping. On Error Compensation in Marine Magnetic Survey[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 603-606.
    [10]Li Shaoxin. Magnetic Monopoles, Maxwell's Equations and Electromagnetic Picture[J]. Geomatics and Information Science of Wuhan University, 1987, 12(3): 86-90.

Catalog

    Article views (1055) PDF downloads (86) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return