GUO Jianfeng. MAD Estimate of Scale Factor and Its Applications in Measurement Adjustment[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1636-1640. DOI: 10.13203/j.whugis20190166
Citation: GUO Jianfeng. MAD Estimate of Scale Factor and Its Applications in Measurement Adjustment[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1636-1640. DOI: 10.13203/j.whugis20190166

MAD Estimate of Scale Factor and Its Applications in Measurement Adjustment

Funds: 

The National Natural Science Foundation of China 41674020

The National Natural Science Foundation of China 40874007

the Henan Key Laboratory of Intelligent Public Opinion Analysis 

More Information
  • Author Bio:

    GUO Jianfeng, PhD, specializes in geodesy and GNSS data processing. E-mail: jianfeng.guo@gmail.com

  • Received Date: April 17, 2020
  • Published Date: November 04, 2021
  •   Objectives  The least-squares method is very sensitive to outliers, and the adjustment outputs will usually be unacceptable when some of the observations are contaminated. Selection of appropriate statistical tests plays a pivotal role both in robust estimation and conventional outlier detection procedures.
      Methods  The MAD (median absolute deviation) estimate of scale factor in the univariate case is discussed firstly. Determination of the Fisher-consistency factor is described for Gaussian normal distribution. Robust estimates of scale factor in linear adjustment model are addressed based on standardized least-squares residuals and the uniformly most powerful test statistics, respectively. Both of them can be used for constructing statistical tests, to identify the potential outlying observations, and therefore their deterioration effect will be mitigated. For illustrative purpose, Monte Carlo simulations in GPS network adjustment scenario are performed.
      Results  Numerical results show that the MAD-based estimate of scale factor is robust and works well in accuracy assessment for adjustment outputs.
      Conclusions  Explicit formula for estimating the scale factor, the MAD is a very robust scale estimator and has low computation complexity. It is therefore appropriate to use the MAD for adjustment computations and accuracy assessment when outliers are present.
  • [1]
    Huber P J. Robust Statistics[M]. New York: Wiley, 1981
    [2]
    周江文, 黄幼才, 杨元喜, 等. 抗差最小二乘法[M]. 武汉: 华中理工大学出版社, 1997

    Zhou Jiangwen, Huang Youcai, Yang Yuanxi, et al. Robust Least Squares Method[M]. Wuhan: Huazhong University of Science and Technology Press, 1997
    [3]
    Wolf P R, Ghilani C D. Adjustment Computations: Statistics and Least Squares in Surveying and GIS [M]. New York: Wiley, 1997
    [4]
    Koch K R. Parameter Estimation and Hypothesis Testing in Linear Models[M]. Berlin: SpringerVerlag, 1999
    [5]
    Leick A, Rapoport L, Tatarnikov D. GPS Satellite Surveying[M]. New York: Wiley, 2015
    [6]
    Barnett V, Lewis T. Outliers in Statistical Data [M]. New York: Wiley, 1994
    [7]
    Baarda W. A Testing Procedure for Use in Geodetic Networks[J]. Netherlands Geodetic Commission, Publications on Geodesy, 1968, 2(5): 1-97
    [8]
    Pope A J. The Statistics of Residuals and the Detection of Outliers[R]. Rockville: NOAA Technical Report, 1976
    [9]
    Chatterjee S, Hadi A S. Sensitivity Analysis in Linear Regression[M]. New York: Wiley, 1988
    [10]
    Kargoll B. On the Theory and Application of Model Misspecification Tests in Geodesy[D]. Bonn: University of Bonn, 2007
    [11]
    鲁铁定, 杨元喜, 周世健. 均值漂移模式几种粗差探测法的MDB比较[J]. 武汉大学学报·信息科学版, 2019, 44(2): 185-192 doi: 10.13203/j.whugis20140330

    Lu Tieding, Yang Yuanxi, Zhou Shijian. Comparative Analysis of MDB for Different Outliers Detection Methods[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 185- 192 doi: 10.13203/j.whugis20140330
    [12]
    王海涛, 欧吉坤, 袁运斌, 等. 估计观测值粗差三种方法的等价性讨论[J]. 武汉大学学报·信息科学版, 2013, 38(2): 162-166 http://ch.whu.edu.cn/article/id/6096

    Wang Haitao, Ou Jikun, Yuan Yunbin, etal. On Equivalence of Three Estimators for Outliers in Linear Model[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 162- 166 http://ch.whu.edu.cn/article/id/6096
    [13]
    Hampel F R. The Influence Curve and its Role in Robust Estimation[J]. Journal of the American Statistical Association, 1974, 69(346): 383-393 doi: 10.1080/01621459.1974.10482962
    [14]
    Rousseeuw P J, Croux C. Alternatives to the Median Absolute Deviation[J]. Journal of the American Statistical Association, 1993, 88(424): 1 273-1 283 doi: 10.1080/01621459.1993.10476408
    [15]
    郭建锋. 模型误差理论若干问题研究及其在GPS数据处理中的应用[D]. 武汉: 中科院测量与地球物理研究所, 2007

    Guo J. Theory of Model Errors and its Applications in GPS Data Processing[D]. Wuhan: Institute of Geodesy and Geophysics of Chinese Academy of Sciences, 2007
    [16]
    Guo J, Ou J, Wang H. Robust Estimation for Correlated Observations: Two Local Sensitivity-based Downweighting Strategies[J]. Journal of Geodesy, 2010, 84(4): 243-250 doi: 10.1007/s00190-009-0361-y
    [17]
    Guo J. A Note on The Conventional Outlier Detection Test Procedures[J]. Boletim Ciencias Geodesicas, 2015, 21(2): 433-440 doi: 10.1590/S1982-21702015000200024
    [18]
    Snow K B, Schaffrin B. Three- Dimensional Outlier Detection for GPS Networks and Their Densification via the BLIMPBE Approach[J]. GPS Solutions, 2003, 7(2): 130-139 doi: 10.1007/s10291-003-0058-2
    [19]
    Yang Y, Song L, Xu T. Robust Estimator for Correlated Observations Based on Bifactor Equivalent Weights[J]. Journal of Geodesy, 2002, 76(6): 353-358 doi: 10.1007%2Fs00190-002-0256-7.pdf
  • Related Articles

    [1]WU Jiaqi, JIANG Yonghua, SHEN Xin, LI Beibei, PAN Shenlin. Satellite Video Motion Detection Supported by Decision Tree Weak Classification[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1182-1190. DOI: 10.13203/j.whugis20180094
    [2]FU Zisheng, LI Qiuping, LIU Lin, ZHOU Suhong. Identification of Urban Network Congested Segments Using GPS Trajectories Double-Clustering Method[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1264-1270. DOI: 10.13203/j.whugis20150036
    [3]DENG Min, CHEN Ti, YANG Wentao. A New Method of Modeling Spatio-temporal Sequence by Considering Spatial Scale Characteristics[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1625-1632. DOI: 10.13203/j.whugis20130842
    [4]FU Zhongliang, LIU Siyuan. MR-tree with Voronoi Diagrams for Parallel Spatial Queries[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1490-1494.
    [5]HE Chu, LIU Ming, XU Lianyu, LIU Longzhu. A Hierarchical Classification Method Based on Feature Selection and Adaptive Decision Tree for SAR Image[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 46-49.
    [6]ZHANG Lu, GAO Zhihong, LIAO Mingsheng, LI Xinyan. Estimating Urban Impervious Surface Percentage with Multi-source Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1212-1216.
    [7]HAN Tao, XU Xiaotao, XIE Yaowen. Automated Construction and Classification of Decision Tree Classifier Based on Single-Temporal MODIS Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 191-194.
    [8]LIAO Mingsheng, JIANG Liming, LIN Hui, YANG Limin. Estimating Urban Impervious Surface Percent Using Boosting as a Refinement of CART Analysis[J]. Geomatics and Information Science of Wuhan University, 2007, 32(12): 1099-1102.
    [9]YU Xin, ZHENG Zhaobao, YE Zhiwei, TIAN Liqiao. Texture Classification Based on Tree Augmented Naive Bayes Classifier[J]. Geomatics and Information Science of Wuhan University, 2007, 32(4): 287-289.
    [10]GUO Jing, LIU Guangjun, DONG Xurong, GUO Lei. 2-Level R-tree Spatial Index Based on Spatial Grids and Hilbert R-tree[J]. Geomatics and Information Science of Wuhan University, 2005, 30(12): 1084-1088.
  • Cited by

    Periodical cited type(13)

    1. 陈月,王磊,池深深,王羽,戚鑫鑫,朱尚军. 基于SBAS-InSAR和CNN-GRU模型的采动村庄地表沉降监测预计. 金属矿山. 2025(02): 138-144 .
    2. 何毅,姚圣,陈毅,闫浩文,张立峰. ConvLSTM神经网络的时序InSAR地面沉降时空预测. 武汉大学学报(信息科学版). 2025(03): 483-496 .
    3. 倪尔瑞,张建新,邱明剑,权力奥,朱晓峻. 基于SBAS-InSAR技术的淮北市地表沉降监测分析. 北京测绘. 2024(03): 312-317 .
    4. 吴启琛,于瑞鹏,王丽,赵乙泽,范开放. 利用Sentinel-1的山东枣庄高新区地面沉降监测与分析. 地理空间信息. 2024(06): 80-83 .
    5. 杨芳,丁仁军,李勇发. 基于SBAS-InSAR技术的金沙江流域典型滑坡时空演化特征分析. 测绘通报. 2024(11): 102-107 .
    6. 祝杰,李瑜,师宏波,刘洋洋,韩宇飞,邵银星,王坦. 鹤岗煤矿区地面沉降时空特征InSAR时间序列监测研究. 中国地震. 2023(03): 596-608 .
    7. 柴龙飞,魏路,张震. 基于SBAS-InSAR的安徽省宿州市埇桥区2019—2022年地面沉降监测及影响因素分析研究. 安徽地质. 2023(04): 348-352 .
    8. 祝杰,韩宇飞,王坦,李瑜,王阅兵,师宏波,刘洋洋,樊俊屹,邵银星. 2017年九寨沟M_S7.0地震同震地表三维形变场解算研究. 中国地震. 2022(02): 348-359 .
    9. 吴毅彬,葛红斌,刘光庆,刘海旺. 基于MT-InSAR技术的厦门新机场填海区沉降监测. 工程勘察. 2021(02): 57-61 .
    10. 翟振起. 基于InSAR沉降监测技术的城市供水管线安全监测系统开发. 水利科学与寒区工程. 2021(01): 103-106 .
    11. 廖明生,王茹,杨梦诗,王楠,秦晓琼,杨天亮. 城市目标动态监测中的时序InSAR分析方法及应用. 雷达学报. 2020(03): 409-424 .
    12. 熊寻安,王明洲,龚春龙. MT-InSAR技术监测水库土石坝表面变形研究. 测绘地理信息. 2019(05): 78-81 .
    13. 王茹,杨天亮,杨梦诗,廖明生,林金鑫,张路. PS-InSAR技术对上海高架路的沉降监测与归因分析. 武汉大学学报(信息科学版). 2018(12): 2050-2057 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return