Citation: | XU Qiang, DONG Xiujun, LI Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966. DOI: 10.13203/j.whugis20190088 |
[1] |
Fruneau B, Achache J, Delacourt C. Observation and Modelling of the Saint-Étienne-de-Tinée Landslide Using SAR Interferometry[J]. Tectonophysics, 1997, 265(3-4): 181-190
|
[2] |
Hilley G E. Dynamics of Slow-Moving Landslides from Permanent Scatterer Analysis[J]. Science, 2004, 304(5 679): 1 952-1 955 doi: 10.1126-science.1098821/
|
[3] |
Zhao C, Lu Z, Zhang Q, et al. Large-Area Landslide Detection and Monitoring with ALOS/PALSAR Imagery Data over Northern California and Southern Oregon, USA[J]. Remote Sensing of Environment, 2012, 124: 348-359 doi: 10.1016/j.rse.2012.05.025
|
[4] |
Wasowski J, Bovenga F. Investigating Landslides and Unstable Slopes with Satellite Multi-temporal Interferometry: Current Issues and Future Perspectives [J]. Engineering Geology, 2014, 174(8): 103-138 http://cn.bing.com/academic/profile?id=1b81bb577743b04c6ac7cdef3fb043f0&encoded=0&v=paper_preview&mkt=zh-cn
|
[5] |
Sun Q, Zhang L, Ding X L, et al. Slope Deformation Prior to Zhouqu, China Landslide from InSAR Time Series Analysis[J]. Remote Sensing of Environment, 2015, 156: 45-57 doi: 10.1016/j.rse.2014.09.029
|
[6] |
Dai K, Li Z, Tomás R, et al. Monitoring Activity at the Daguangbao Mega-landslide (China) Using Sentinel-1 TOPS Time Series Interferometry[J]. Remote Sensing of Environment, 2016, 186: 501-513 doi: 10.1016/j.rse.2016.09.009
|
[7] |
廖明生, 王腾.时间序列InSAR技术与应用[M].北京:科学出版社, 2014
Liao Mingsheng, Wang Teng. Time Series InSAR Technology and Its Applications [M]. Beijing: Science Press, 2014
|
[8] |
Ferretti A, Prati C, Rocca F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2 202-2 212 doi: 10.1109/36.868878
|
[9] |
Zhang L, Lu Z, Ding X, et al. Mapping Ground Surface Deformation Using Temporarily Coherent Point SAR Interferometry: Application to Los Angeles Basin[J]. Remote Sensing of Environment, 2012, 117: 429-439 doi: 10.1016/j.rse.2011.10.020
|
[10] |
廖明生, 张路, 史绪国, 等.滑坡变形雷达遥感监测方法与实践[M].北京:科学出版社, 2017
Liao Mingsheng, Zhang Lu, Shi Xuguo, et al. Methodology and Practice of Landslide Deformation Monitoring with SAR Remote Sensing[M]. Beijing: Science Press, 2017
|
[11] |
Dong J, Liao M, Xu Q, et al. Detection and Displacement Characterization of Landslides Using Multi-temporal Satellite SAR Interferometry: A Case Study of Danba County in the Dadu River Basin[J]. Engineering Geology, 2018, 240: 95-109 doi: 10.1016/j.enggeo.2018.04.015
|
[12] |
Dong J, Zhang L, Tang M, et al. Mapping Landslide Surface Displacements with Time Series SAR Interferometry by Combining Persistent and Distributed Scatterers: A Case Study of Jiaju Landslide in Danba, China[J]. Remote Sensing of Environment, 2018, 205: 180-198 doi: 10.1016/j.rse.2017.11.022
|
[13] |
Liu X, Zhao C, Zhang Q, et al. Multi-temporal Loess Landslide Inventory Mapping with C-, X- and L-Band SAR Datasets—A Case Study of Heifangtai Loess Landslides, China[J].Remote Sensing, 2018, 10(11): 1 756 http://cn.bing.com/academic/profile?id=fd4a00f413950e6b3405c7288befae35&encoded=0&v=paper_preview&mkt=zh-cn
|
[14] |
Costantini M, Ferretti A, Minati F, et al. Analysis of Surface Deformations over the Whole Italian Territory by Interferometric Processing of ERS, Envisat and COSMO-SkyMed Radar Data[J].Remote Sensing of Environment, 2017, 202: 250-275 doi: 10.1016/j.rse.2017.07.017
|
[15] |
许强, 李为乐, 董秀军, 等.四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J].岩石力学与工程学报, 2017, 36(11): 17-33 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201711002
Xu Qiang, Li Weile, Dong Xiujun, et al. The Xinmocun Landslide on June 24, 2017 in Maoxian, Sichuan: Characteristics and Failure Mechanism[J].Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 17-33 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201711002
|
[16] |
Fan X, Qiang X, Scaringi G, et al. Failure Mechanism and Kinematics of the Deadly June 24th 2017 Xinmo Landslide, Maoxian, Sichuan, China[J]. Landslides, 2017, 14(6): 2 129-2 146 doi: 10.1007/s10346-017-0907-7
|
[17] |
许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J].工程地质学报, 2018, 26(6): 1 534-1 551 http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201806017
Xu Qiang, Zheng Guang, Li Weile, et al. Study on Successive Landslide Damming Events of Jinsha River in Baige Village on October 11 and November 3, 2018[J]. Journal of Engineering Geology, 2018, 26(6): 1 534-1 551 http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201806017
|
[18] |
Intrieri E, Raspini F, Fumagalli A, et al. The Maoxian Landslide as Seen from Space: Detecting Precursors of Failure with Sentinel-1 Data[J].Landslides, 2018, 15(1): 123-133 doi: 10.1007/s10346-017-0915-7
|
[19] |
Dong J, Zhang L, Li M, et al. Measuring Precursory Movements of the Recent Xinmo Landslide in Mao County, China with Sentinel-1 and ALOS-2 PALSAR-2 Datasets[J]. Landslides, 2018, 15(1): 135-144 doi: 10.1007/s10346-017-0914-8
|
[20] |
许强, 汤明高, 黄润秋.大型滑坡监测预警与应急处置[M].北京:科学出版社, 2015
Xu Qiang, Tang Minggao, Huang Runqiu. Monitoring, Early Warning and Emergency Disposal of Large Landslides[M]. Beijing: Science Press, 2015
|
[1] | YANG Jiuyuan, WEN Yangmao, XU Caijun. Seismogenic Fault Structure of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 313-321. DOI: 10.13203/j.whugis20230501 |
[2] | LIU Bin, ZHANG Li, GE Daqing, LI Man, ZHOU Xiaolong, GUO Zhaocheng, SHI Pengqing, ZHANG Ling, JIN Dingjian, WAN Xiangxing, WANG Yu, WANG Yan. Application of InSAR Monitoring Large Deformation of Landslides Using Lutan-1 Constellation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1753-1762. DOI: 10.13203/j.whugis20230478 |
[3] | YANG Jiuyuan, WEN Yangmao, XU Caijun. Coseismic Rupture Behavior of the 2024 Nima (Tibet) MW 6.0 Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240243 |
[4] | MAO Hongfei, XIE Lei, JIANG Kun, SUN Kai, WANG Jiageng, XU Wenbin. Source Parameter Inversion of Moderate to Strong Earthquakes and Its Comparison with Earthquake Catalogs in Tibetan Plateau based on InSAR Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240124 |
[5] | XU Qiang, LU Huiyan, LI Weile, DONG Xiujun, GUO Chen. Types of Potential Landslide and Corresponding Identification Technologies[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 377-387. DOI: 10.13203/j.whugis20210618 |
[6] | LIU Bin, GE Daqing, WANG Shanshan, LI Man, ZHANG Ling, WANG Yan, WU Qiong. Combining Application of TOPS and ScanSAR InSAR in Large-Scale Geohazards Identification[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1756-1762. DOI: 10.13203/j.whugis20200259 |
[7] | LIU Yang, XU Caijun, WEN Yangmao. InSAR Observation of Menyuan Mw5.9 Earthquake Deformation and Deep Geometry of Regional Fault Zone[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1035-1042. DOI: 10.13203/j.whugis20190069 |
[8] | CAO Haikun, ZHAO Lihua, ZHANG Qin, QU Wei, NIE Jianliang. Ascending and Descending Orbits InSAR-GPS Data Fusion Method with Additional Systematic Parameters for Three-Dimensional Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1362-1368. DOI: 10.13203/j.whugis20160461 |
[9] | Yue Xijuan, Han Chunming, Dou Changyong, Zhao Yinghui. Mathematical Model of Airborne InSAR Block Adjustment[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 59-63. |
[10] | WU Yunsun, LI Zhenhong, LIU Jingnan, XU Caijun. Atmospheric Correction Models for InSAR Measurements[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 862-867. |