CAO Haikun, ZHAO Lihua, ZHANG Qin, QU Wei, NIE Jianliang. Ascending and Descending Orbits InSAR-GPS Data Fusion Method with Additional Systematic Parameters for Three-Dimensional Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1362-1368. DOI: 10.13203/j.whugis20160461
Citation: CAO Haikun, ZHAO Lihua, ZHANG Qin, QU Wei, NIE Jianliang. Ascending and Descending Orbits InSAR-GPS Data Fusion Method with Additional Systematic Parameters for Three-Dimensional Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1362-1368. DOI: 10.13203/j.whugis20160461

Ascending and Descending Orbits InSAR-GPS Data Fusion Method with Additional Systematic Parameters for Three-Dimensional Deformation Field

Funds: 

The National Natural Science Foundation of China 41604001

The National Natural Science Foundation of China 41674001

The National Natural Science Foundation of China 41574003

The National Natural Science Foundation of China 41504005

the Fundamental Research Funds for the Central Universities 310826171005

the Fundamental Research Funds for the Central Universities 310826161023

the Fundamental Research Funds for the Central Universities 310826151050

the Natural Science Basic Research Plan in Shaanxi Province of China 2016JM4005

More Information
  • Author Bio:

    CAO Haikun, postgraduate, specializes in GPS-InSAR data processing.E-mail:872720268@qq.com

  • Corresponding author:

    ZHAO Lihua, associate professor, PhD. E-mail:zhaolih@chd.edu.cn

  • Received Date: March 21, 2017
  • Published Date: September 04, 2018
  • According to the fact that InSAR has the advantages of the high spatial resolution while GPS has the advantages of the high precision and high time resolution, we discuss the method of obtaining high precision three-dimensional deformation field by integrating both ascending and descen-ding orbits InSAR data and GPS data. To weaken the influence of the remaining systematic errors in InSAR data, an integrated deformation analysis model with additional systematic parameters is established, where systematic error functions related to the position of observed points are added in both ascending and descending orbits InSAR observation equations under the constraint of high accurate GPS observations. The simulated and practical examples show that the proposed method can identify systematic error in InSAR data effectively and the calculation is simple. As a result, the three-dimensional deformation field with a higher accuracy will be established by the method proposed in this paper.
  • [1]
    张永志.位错理论及其在大地变形研究中的应用[M].西安:西安交通大学出版社, 2011

    Zhang Yongzhi. Dislocation Theory and Its Application in the Study of the Deformation of the Earth[M]. Xi'an:Xi'an Jiaotong University Press, 2011
    [2]
    Gudmundsson S, Sigmundsson F. Three-Dimensional Surface Motion Maps Estimated from Combined Interferometric Synthetic Aperture Radar and GPS Data[J]. Journal of Geophysical Research, 2002, 107(B10):2250-2264 doi: 10.1029/2001JB000283
    [3]
    Samsonov S V, Tiampo K F, Rundle J B, et al. Application of InSAR-GPS Optimization for Derivation of Fine Scale Surface Motion Maps of Southern California[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(2):512-521 doi: 10.1109/TGRS.2006.887166
    [4]
    胡俊, 李志伟, 朱建军, 等.基于BFGS法融合InSAR和GPS技术监测地表三维形变[J].地球物理学报, 2013, 56(1):117-126 doi: 10.3969/j.issn.1672-7940.2013.01.024

    Hu Jun, Li Zhiwei, Zhu Jianjun, et al. Measuring Three-Dimensional Surface Displacements from Combined InSAR and GPS Data Based on BFGS Method[J]. Chinese Journal of Geophysics, 2013, 56(1):117-126 doi: 10.3969/j.issn.1672-7940.2013.01.024
    [5]
    何秀凤, 史国强, 肖儒雅.基于蚁群优化的GPS/DInSAR三维形变监测方法[J].同济大学学报(自然科学版), 2015, 43(10):1594-1600 doi: 10.11908/j.issn.0253-374x.2015.10.022

    He Xiufeng, Shi Guoqiang, Xiao Ruya. Integration of GPS and DInSAR for 3-D Deformation Monitoring Based on Ant Colony Optimization[J]. Journal of Tongji University (Natural Science), 2015, 43(10):1594-1600 doi: 10.11908/j.issn.0253-374x.2015.10.022
    [6]
    胡俊. 基于现代测量平差的InSAR三维形变估计理论与方法[D]. 长沙: 中南大学, 2012

    Hu Jun. Theory and Method of Estimating Three-Dimensional Displacement with InSAR Based on the Modern Surveying Adjustment[D]. Changsha: Central South University, 2012
    [7]
    Hu J, Li Z W, Sun Q, et al. Three-Dimensional Surface Displacements from InSAR and GPS Mea-surements with Variance Component Estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4):754-758 doi: 10.1109/LGRS.2011.2181154
    [8]
    张勤, 张菊清, 岳东杰, 等.近代测量数据处理与应用[M].北京:测绘出版社, 2011

    Zhang Qin, Zhang Juqing, Yue Dongjie, et al. Advanced Theory and Application of Surveying Data[M]. Beijing:Surveying and Mapping Press, 2011
    [9]
    Samsonov S V, Tiampo K F, Rundle J B. Application of InSAR-GPS Optimization for Derivation of Three-Dimensional Surface Motion of the Southern California Region Along the San Andreas Fault[J]. Computers & Geosciences, 2008, 34(5):503-514 http://adsabs.harvard.edu/abs/2006AGUFM.G53D0932S
    [10]
    Guglielmino F, Nunnari G, Puglisi G, et al. Simultaneous and Integrated Strain Tensor Estimation from Geodetic and Satellite Deformation Measurements to Obtain Three-Dimensional Displacement Maps[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6):1815-1826 doi: 10.1109/TGRS.2010.2103078
    [11]
    Catalao J, Nico G, Hanssen R, et al. Merging GPS and Atmospherically Corrected InSAR Data to Map 3-D Terrain Displacement Velocity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6):2354-2360 doi: 10.1109/TGRS.2010.2091963
    [12]
    张勤, 赵超英, 丁晓利, 等.利用GPS与InSAR研究西安现今地面沉降与地裂缝时空演化特征[J].地球物理学报, 2009, 52(5):1214-1222 doi: 10.3969/j.issn.0001-5733.2009.05.010

    Zhang Qin, Zhao Chaoying, Ding Xiaoli, et al. Research on Recent Characteristics of Spatio-Temporal Evolution and Mechanism of Xi'an Land Subsidence and Ground Fissure by Using GPS and InSAR Techniques[J]. Chinese Journal of Geophysics, 2009, 52(5):1214-1222 doi: 10.3969/j.issn.0001-5733.2009.05.010
    [13]
    Lee C W, Lu Z, Jung H S. Simulation of Time-Series Surface Deformation to Validate a Multi-interferogram InSAR Processing Technique[J]. International Journal of Remote Sensing, 2012, 33(22):7075-7087 doi: 10.1080/01431161.2012.700137
    [14]
    罗海滨, 何秀凤, 刘焱雄.利用DInSAR和GPS综合方法估计地表 3维形变速率[J].测绘学报, 2008, 37(2):960-963 http://d.old.wanfangdata.com.cn/Periodical/chxb200802007

    Luo Haibin, He Xiufeng, Liu Yanxiong. Estimation of Three-Dimensional Surface Motion Velocities Using Integration of D-InSAR and GPS[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(2):960-963 http://d.old.wanfangdata.com.cn/Periodical/chxb200802007
    [15]
    黄维彬.近代平差理论及其应用[M].北京:解放军出版社, 1992

    Huang Weibin. Modern Adjustment Theory and Its Application[M]. Beijing:Chinese People's Liberation Army Publishing House, 1992
  • Related Articles

    [1]TANG Jun, ZHONG Zhengyu, DING Mingfei, WU Xuequn. Ionospheric TEC Prediction in China Based on ENN Improved by PSO Algorithm[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1867-1878. DOI: 10.13203/j.whugis20220254
    [2]LI Yongtao, ZHAO Ang, LI Jianwen, CHE Tongyu, PAN Lin, CHEN Chen. Regional Ionospheric TEC Modeling and Accuracy Analysis Based on Observations from a Station[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 69-78. DOI: 10.13203/j.whugis20190286
    [3]OU Ming, ZHEN Weimin, XU Jisheng, YU Xiao, LIU Yiwen, LIU Dun. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1075-1081. DOI: 10.13203/j.whugis20150297
    [4]SONG Fucheng, SHI Shuangshuang, FENG Jiandi. Construction of Ionospheric TEC Assimilation Model Based on Chapman Function[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 784-790. DOI: 10.13203/j.whugis20150101
    [5]WANG Zemin, CHE Guowei, AN Jiachun. Comprehensive Observation and Analysis of Weddell Sea Anomaly in Antarctica[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1421-1427. DOI: 10.13203/j.whugis20150270
    [6]NIE Wenfeng, HU Wusheng, PAN Shuguo, SONG Yubing. )Extraction of Regional Ionospheric TEC from GPS Dual Observation[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1022-1027. DOI: 10.13203/j.whugis20130046
    [7]TANG Jun, YAO Yibin, CHEN Peng, ZHANG Shun. Prediction Models of Ionospheric TEC Improved by EMD Method[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 408-411.
    [8]CHEN Peng, YAO Yibin, WU Han. TEC Prediction of Ionosphere Based on Time Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 267-270.
    [9]LIN Jian, WU Yun, ZHU Fuying. Ionosphere TEC Anomalous Disturbance of Pre-seism[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 975-978.
    [10]MENG Yang, WANG Zemin, E Dongchen. Ionopsheric TEC Anomalies of Pre-Earthquake Based on GPS Data[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 81-84.
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(28)

Catalog

    Article views (2017) PDF downloads (396) Cited by(56)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return