XU Qiang, LU Huiyan, LI Weile, DONG Xiujun, GUO Chen. Types of Potential Landslide and Corresponding Identification Technologies[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 377-387. DOI: 10.13203/j.whugis20210618
Citation: XU Qiang, LU Huiyan, LI Weile, DONG Xiujun, GUO Chen. Types of Potential Landslide and Corresponding Identification Technologies[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 377-387. DOI: 10.13203/j.whugis20210618

Types of Potential Landslide and Corresponding Identification Technologies

Funds: 

The National Innovation Research Group Science Fund 41521002

More Information
  • Author Bio:

    XU Qiang, PhD, professor, specializes in the theory and methods of geological disaster prevention. E-mail: xq@cdut.edu.cn

  • Received Date: November 14, 2021
  • Available Online: January 13, 2022
  • Published Date: March 04, 2022
  •   Objectives  Integrated remote sensing application based on the space-air-ground investigation system has been promoted nationwide and has achieved certain results. However, as the work progresses, some urgent problems have been exposed, such as how to define hidden hazards and what types of them, what are the targeted identification technologies, and what is the focus of the next step, etc.
      Methods  By summarizing a large number of practical cases, the definition of hidden landslide hazards is further clarified. Potential landslides are divided into three categories: Deformation area, historical deformation failure area and potentially unstable slope, and we propose targeted identification techniques for different types.
      Results  The deformation zone is mainly identified by combining multi-temporal high resolution optical images and synthetic aperture radar interferometry technology (InSAR), high-resolution optical remote sensing images and light detection and ranging (LiDAR) can be used in the historical deformation and destruction region.
      Conclusions  Potential unstable slopes are difficult to identify by remote sensing and traditional artificial investigations. It is necessary to vigorously develop aerial and semi-aerial geophysical prospecting technology to identify the underground structure of the slope quickly, especially the spatial distribution of the base-cover interface and the groundwater status, and delineate dangerous areas through quantitative analysis of stability.
  • [1]
    许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报·信息科学版, 2019, 44(7): 957-966 doi: 10.13203/j.whugis20190088

    Xu Qiang, Dong Xiujun, Li Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warning for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966 doi: 10.13203/j.whugis20190088
    [2]
    许强. 构建新"三查"体系, 创新地灾防治新机制[N]. 中国矿业报, 2018-03-12

    Xu Qiang. Constructing a New"Three-Check"System, Innovating New Mechanisms for Disaster Prevention and Control[N]. China Mining Newspaper, 2018-03-12
    [3]
    葛大庆. 地质灾害早期识别与监测预警中的综合遥感[J]. 城市与减灾, 2018(6): 53-60 doi: 10.3969/j.issn.1671-0495.2018.06.011

    Ge Daqing. Integrated Remote Sensing Application in Early Identification, Monitoring of Geological Hazards [J]. City and Disaster Reduction, 2018(6): 53-60 doi: 10.3969/j.issn.1671-0495.2018.06.011
    [4]
    葛大庆, 戴可人, 郭兆成, 等. 重大地质灾害隐患早期识别中的思考与建议[J]. 武汉大学学报·信息科学版, 2019, 44(7): 949-956 doi: 10.13203/j.whugis20190094

    Ge Daqing, Dai Keren, Guo Zhaocheng, et al. Early Identification of Serious Geological Hazards with Integrated Remote Sensing Technologies: Thoughts and Recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 949-956 doi: 10.13203/j.whugis20190094
    [5]
    李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策[J]. 武汉大学学报·信息科学版, 2019, 44(7): 967-979 doi: 10.13203/j.whugis20190098

    Li Zhenhong, Song Chuang, Yu Chen, et al. Application of Satellite Radar Remote Sensing to Landslide Detection and Monitoring: Challenges and Solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979 doi: 10.13203/j.whugis20190098
    [6]
    张路, 廖明生, 董杰, 等. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别: 以四川丹巴为例[J]. 武汉大学学报·信息科学版, 2018, 43(12): 2039-2049 doi: 10.13203/j.whugis20180181

    Zhang Lu, Liao Mingsheng, Dong Jie, et al. Early Dectection of Landslide Hazards in Mountains Areas of West China Using Time Series SAR Interferometry: A Case Study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2039-2049 doi: 10.13203/j.whugis20180181
    [7]
    Dong J, Liao M, Xu Q, et al. Detection and Displacement Characterization of Landslides Using Multi-temporal Satellite SAR Interferometry: A Case Study of Danba County in the Dadu River Basin [J]. Engineering Geology, 2018, 240(5): 94-109 http://www.sciencedirect.com/science/article/pii/S0013795217310736/
    [8]
    Dong J, Zhang L, Tang M, et al. Mapping Landslide Surface Displacements with Time Series SAR Interferometry by Combining Persistent and Distributed Scatterers: A Case Study of Jiaju Landslide in Danba, China[J]. Remote Sensing of Environment, 2018, 205: 180-198 doi: 10.1016/j.rse.2017.11.022
    [9]
    赵超英, 刘晓杰, 张勤, 等. 甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J]. 武汉大学学报·信息科学版, 2019, 44(7): 996-1007 doi: 10.13203/j.whugis20190072

    Zhao Chaoying, Liu Xiaojie, Zhang Qin, et al. Research on Loess Landslide Identification, Monitoring and Failure Mode with InSAR Technique in Heifangtai, Gansu[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 996-1007 doi: 10.13203/j.whugis20190072
    [10]
    陆会燕, 李为乐, 许强, 等. 光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J]. 武汉大学学报·信息科学版, 2019, 44(9): 1342-1354 doi: 10.13203/j.whugis20190086

    Lu Huiyan, Li Weile, Xu Qiang, et al. Early Detection of Landslides in the Upstream and Downstream Areas of the Baige Landslide, the Jinsha River Based on Optical Remote Sensing and InSAR Technologies[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1342-1354 doi: 10.13203/j.whugis20190086
    [11]
    许强. 对地质灾害隐患早期识别相关问题的认识与思考[J]. 武汉大学学报·信息科学版, 2020, 45(11): 1651-1659 doi: 10.13203/j.whugis20200043

    Xu Qiang. Understanding and Consideration of Related Issues in Early Identification of Potential Geohazards[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1651-1659 doi: 10.13203/j.whugis20200043
    [12]
    郭晨, 许强, 董秀军, 等. 复杂山区地质灾害机载激光雷达识别研究[J]. 武汉大学学报·信息科学版, 2021, 46(10): 1538-1547 doi: 10.13203/j.whugis20210121

    Guo Chen, Xu Qiang, Dong Xiujun, et al. Geohazard Recognition by Airborne LiDAR Technology in Complex Mountain Areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1538-1547 doi: 10.13203/j.whugis20210121
    [13]
    李为乐, 许强, 陆会燕, 等. 大型岩质滑坡形变历史回溯及其启示[J]. 武汉大学学报· 信息科学版, 2019, 44(7): 1043-1053 doi: 10.13203/j.whugis20190090

    Li Weile, Xu Qiang, Lu Huiyan, et al. Tracking the Deformation History of Large-Scale Rocky Landslides and Its Enlightenment[J]. Geomatics and Information Science of Wuhan University, 2019, 44 (7): 1043-1053 doi: 10.13203/j.whugis20190090
    [14]
    许强, 汤明高, 徐开祥, 等. 滑坡时空演化规律及预警预报研究[J]. 岩石力学与工程学报, 2008, 27(6): 1104-1112 doi: 10.3321/j.issn:1000-6915.2008.06.003

    Xu Qiang, Tang Minggao, Xu Kaixiang, et al. Research on Space-Time Evolution Laws and Early Warning-Prediction of Landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27 (6): 1104-1112 doi: 10.3321/j.issn:1000-6915.2008.06.003
    [15]
    郑光, 许强, 刘秀伟, 等. 2019年7月23日贵州水城县鸡场镇滑坡-碎屑流特征与成因机理研究[J]. 工程地质学报, 2020, 28(3): 541-556 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202003012.htm

    Zheng Guang, Xu Qiang, Liu Xiuwei, et al. The Jichang Landslide on July 23, 2019 in Shuicheng, Guizhou: Characteristics and Failure Mechanism[J]. Journal of Engineering Geology, 2020, 28(3): 541-556 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202003012.htm
    [16]
    Kääb A, Leinss S, Gilbert A, et al. Massive Collapse of Two Glaciers in Western Tibet in 2016 After Surge-Like Instability[J]. Nature Geoscience, 2018, 11: 114-120 doi: 10.1038/s41561-017-0039-7
    [17]
    Colesanti C, Wasowski J. Investigating Landslides with Space-Borne Synthetic Aperture Radar(SAR) Interferometry[J]. Engineering Geology, 2006, 88 (3): 173-199 http://www.onacademic.com/detail/journal_1000034072780510_48ea.html
    [18]
    Zhang Y, Meng X, Chen G, et al. Detection of Geohazards in the Bailong River Basin Using Synthetic Aperture Radar Interferometry[J]. Landslides, 2016, 13(5): 1273-1284 doi: 10.1007/s10346-015-0660-8
    [19]
    Liu X, Zhao C, Zhang Q, et al. Integration of Sentinel-1 and ALOS/PALSAR-2 SAR Datasets for Mapping Active Landslides Along the Jinsha River Corridor, China[J]. Engineering Geology, 2021, 284: 106033 doi: 10.1016/j.enggeo.2021.106033
    [20]
    熊盛青. 发展中国航空物探技术有关问题的思考[J]. 中国地质, 2009, 36(6): 1366-1374 doi: 10.3969/j.issn.1000-3657.2009.06.018

    Xiong Shengqing. The Strategic Consideration of the Development of China ? s Airborne Geophysical Technology[J]. Geology in China, 2009, 36(6): 1366-1374 doi: 10.3969/j.issn.1000-3657.2009.06.018
    [21]
    Langhammer L, Rabenstein L, Schmid L, et al. Glacier Bed Surveying with Helicopter-Borne Dual-polarization Ground-penetrating Radar[J]. Journal of Glaciology, 2019, 65(249): 123-135 doi: 10.1017/jog.2018.99
    [22]
    Nabighian M. Electromagnetic Methods in Applied Geophysicstheroy[J]. Exploration Geophysicists, 1987(1): 217-231 http://mtnet.dias.ie/working_group/papers/EMWKSHP_ReviewVolumes/1978Murnau/Vozoff_1978MurnauReview_SG_1980.pdf
    [23]
    Wu X, Fang G, Xue G, et al. The Development and Applications of the Helicopter-borne Transient Electromagnetic System CAS-HTEM[J]. Journal of Enviromental and Engineering Geophysics, 2019, 24(4): 653-663 doi: 10.2113/JEEG24.4.653
    [24]
    王仕兴, 易国财, 王绪本, 等. 基于分段二分搜索算法的半航空瞬变电磁电导率深度快速成像方法研究[J]. 地球物理学进展, 2021, 36(3): 1317-1324 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202103047.htm

    Wang Shixing, Yi Guocai, Wang Xuben, et al. Research on the Semi-airborne Transient Electromagnetic Conductivity Depth Rapid Imaging Method Based on Segmented Binary Search Algorithm[J]. Progress in Geophysics, 2021, 36(3): 1317-1324 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202103047.htm
  • Related Articles

    [1]XU Qiang, DONG Xiujun, LI Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966. DOI: 10.13203/j.whugis20190088
    [2]YU Caixia, WANG Jiayao, HUANG Wenqian, XU Jian. An Improved Binary Image Method of Extracting Shoreline Based on LiDAR Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 897-903. DOI: 10.13203/j.whugis20150103
    [3]Wu Jun, Li Wei, Peng Zhiyong, Liu Rong, Tang Min. Integrating Morphological Grayscale Reconstruction and TIN Models for High-quality Filtering of Airborne LiDAR Points[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11): 1298-1303.
    [4]WANG Yongbo, YANG Huachao, LIU Yanhua, NIU Xiaonan. Linear-Feature-Constrained Registration of LiDAR Point Cloud via Quaternion[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1057-1062.
    [5]CHENG Liang, LI Manchun, GONG Jianya, SHAN Jie. 3D Reconstruction of Building Rooftops from LiDAR Data and Orthophoto[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 208-211,216.
    [6]SUN Jie, MA Hongchao, TANG Xuan. Optimization of LiDAR System Ortho-image Mosaic Seam-Line[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 325-328.
    [7]SHEN Jing, LIU Jiping, LIN Xiangguo. Airborne LiDAR Data Filtering by Morphological Reconstruction Method[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 167-170.
    [8]WANG Zongyue, MA Hongchao, PENG Jiangui, GAO Guang. A Smooth Contour Generation Method Based on LiDAR Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1318-1321.
    [9]WANG Zongyue, MA Hongchao, XU Honggen, WU Jianwei. An Approach for Distributed Organization and Paralleled Access of LiDAR Point Clouds Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 936-939.
    [10]HUANG Xianfeng, Gunho Sohn, WANG Xiao, ZHANG Fan. Roof Detection Using LiDAR Data Based on Points' Normal with Weight[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 24-27.
  • Cited by

    Periodical cited type(45)

    1. 房颖晖,李郎平,杨文涛,兰恒星,田静,高佳鑫. 利用形变时序分形特征识别高山冰川区滑坡. 地球信息科学学报. 2025(01): 239-255 .
    2. 席大鹏,王丹. 唐山市某建筑场地后缘不稳定边坡稳定性评价与防治建议. 地下水. 2025(01): 206-208 .
    3. 李永鑫,王德富,马志刚,范亚军,杨本勇,刘立,罗超. 知识图谱驱动下的多源遥感滑坡隐患识别. 测绘通报. 2024(01): 12-18 .
    4. 邢明泽,左小清,张荐铭,黄成,李勇发,布金伟,石超. 基于SBAS-InSAR技术的西南山区滑坡稳定性监测. 测绘通报. 2024(02): 63-68 .
    5. 唐荣成,吴伟健. 多源遥感数据解译下的山区滑坡易发性评价. 科技与创新. 2024(05): 1-6+10 .
    6. 翟子轩,陈帆,高建强,宁立波. 紫阳县城关镇滑坡灾害隐患识别. 安全与环境工程. 2024(02): 193-201 .
    7. 付豪,李为乐,陆会燕,许强,董秀军,郭晨,谢毅,王栋,刘刚,马志刚. 基于“三查”体系的丹巴县滑坡隐患早期识别与监测. 武汉大学学报(信息科学版). 2024(05): 734-746 .
    8. 吴雄骁,王斌,刘金沧. 用Sentinel-1卫星影像数据监测珠江西岸地表沉降. 城市勘测. 2024(02): 204-208 .
    9. 邓斐,张双成,樊茜佑,牛玉芬,惠文华,司锦钊,吴文辉. 时序InSAR用于滑坡灾前二维形变追溯与灾后风险评价. 测绘科学. 2024(01): 67-78 .
    10. 邓明东,巨能攀,吴天伟,文艳,解明礼,赵伟华,何佳阳. 不同滑坡样本点和多边形表达模式下的易发性评价. 地球科学. 2024(05): 1565-1583 .
    11. 闵希超,薛东剑,张凌煜. 基于时序InSAR技术的西山黄土滑坡形变特征分析. 自然资源信息化. 2024(01): 42-49 .
    12. 邓志勇,黄海峰,李清清,周红,张瑞,柳青,董志鸿. 基于Swin Transformer目标全景分割的三峡库首土质滑坡识别. 水利水电技术(中英文). 2024(04): 176-185 .
    13. 马晓雪,焦润成,曹颖,南赟,王晟宇,郭学飞,赵丹凝,闫驰,倪璇. 重大工程建设中地质灾害综合遥感监测技术方法应用——以北京2022冬奥会延庆赛区为例. 自然资源遥感. 2024(02): 248-256 .
    14. 张元,陈爱兵,邵东桥,李可可,张文纶,董雪健. 滇中祥云盆地构造应力场孕灾机制及其应对措施研究. 自然灾害学报. 2024(03): 152-166 .
    15. 关艳丽,贾荣谷,李育红,翁彦梅,李家艳,冯蕊. 水库滑坡机理及风险评价研究与展望. 人民珠江. 2024(08): 10-18 .
    16. 李昊,李叶繁,魏长婧,王磊杰,康利军,姜川. 基于SBAS-InSAR技术的登封市潜在地质灾害识别研究. 河南科学. 2024(08): 1170-1178 .
    17. 刘榜余,任鸿光,张洪,邹强,刘磊. 贵州省印江县余家滑坡发育特征及稳定性分析. 云南水力发电. 2024(08): 67-70 .
    18. 陈明浩,郑光,刘震东,刘俊杰,陆会燕. 反倾层状岩质边坡倾倒变形模式与宏观形变特征关系研究. 工程科学与技术. 2024(05): 60-73 .
    19. LI Qingpeng,LIU Wenhui,HE Renjie,YING Chunye,LIU Hairui,DOU Zengning,LIU Yabing,YANG Sha,SONG Xianteng. A local rainfall-triggered giant landslide occurred in a region along a high-speed railway on the Qinghai-Tibetan Plateau. Journal of Mountain Science. 2024(09): 2939-2955 .
    20. 张攀,李为乐,陆会燕,周胜森,李维敏,许善淼. 基于SBAS-InSAR的库区活动滑坡变形特征与库水位变化响应关系:以四川省黑水县毛尔盖水电站为例. 科学技术与工程. 2024(28): 11991-12002 .
    21. 王峰,齐云龙,郭晨. 四川省会东县崩滑灾害孕灾地质条件分析. 地质与资源. 2024(05): 707-715 .
    22. 徐刚,刘青豪. 区域统计约束的滑坡易发性评估与制图. 测绘通报. 2024(12): 170-177 .
    23. 彭志忠,袁飞云,肖锋,何阳. 多源遥感数据融合调查的复杂山区滑坡易发性评价方法研究. 地质灾害与环境保护. 2023(01): 1-7 .
    24. 杨凯钧,唐伟,胡宝俊,魏继德,张哲. 我国典型丘陵区地质灾害发育规律与形成条件分析——以麻阳为例. 北京测绘. 2023(03): 402-408 .
    25. 张昱. 基于倾斜摄影的高陡坡面泥石流风险识别. 江西建材. 2023(03): 191-193 .
    26. 毛正君,张瑾鸽,仲佳鑫,王军. 基于确定性系数法的梯田型黄土滑坡隐患影响因素分析. 水土保持通报. 2023(02): 183-192+340 .
    27. 盛敏汉,储日升,危自根,曾求,孙晓倩,马海超. 基于被动源地震学方法的四川理县西山村滑坡结构与变形研究综述. 武汉大学学报(信息科学版). 2023(06): 870-878 .
    28. 韩龙祖,贾丹. 遥感技术在水电站地质灾害识别与监测预警中的应用与展望. 中国矿业. 2023(S1): 248-251 .
    29. 王正庆,李策,陈雨林,刘中楠,丁华栋,余言,李天鹏,郭知鑫. 基于遥感技术的地质灾害解译及评价监测进展. 南华大学学报(自然科学版). 2023(02): 31-36 .
    30. 郭剑,崔一飞. 滑坡-泥石流转化研究进展. 工程地质学报. 2023(03): 762-779 .
    31. 许强,董秀军,朱星,邓博,戴可人. 基于实景三维的天-空-地-内滑坡协同观测. 工程地质学报. 2023(03): 706-717 .
    32. 马博,朱杰勇,刘帅,杨得虎. 联合时序InSAR和滑坡灾害易发性的元阳县滑坡灾害隐患识别. 地质灾害与环境保护. 2023(03): 8-14 .
    33. 王朋伟,安玉科. 基于倾斜摄影与InSAR技术的高位崩塌风险识别. 水文地质工程地质. 2023(05): 169-180 .
    34. 李阳,张锐. 基于时空信息技术的地质灾害监测系统. 山西电子技术. 2023(05): 70-72 .
    35. 黄俊达,许柔娜,唐思瑶. 基于矢量化电力线的架空线路树障快速分析方法. 南方能源建设. 2023(06): 146-152 .
    36. 姜万冬,席江波,李振洪,丁明涛,杨立功,谢大帅. 模拟困难样本的Mask R-CNN滑坡分割识别. 武汉大学学报(信息科学版). 2023(12): 1931-1942 .
    37. 董秀军,邓博,袁飞云,付霞,张文居,巨袁臻,任晓虎. 航空遥感在地质灾害领域的应用:现状与展望. 武汉大学学报(信息科学版). 2023(12): 1897-1913 .
    38. 张勤,赵超英,陈雪蓉. 多源遥感地质灾害早期识别技术进展与发展趋势. 测绘学报. 2022(06): 885-896 .
    39. 李振洪,张成龙,陈博,占洁伟,丁明涛,吕艳,李鑫泷,彭建兵. 一种基于多源遥感的滑坡防灾技术框架及其工程应用. 地球科学. 2022(06): 1901-1916 .
    40. 常宏. 三峡库区潜在顺层岩质滑坡识别的宏观判据. 华南地质. 2022(02): 265-272 .
    41. 黄艳琴,李为乐,许洲,李鹏飞,铁永波. 国道213汶川—松潘段滑坡隐患遥感识别与易发性评价. 中国地质调查. 2022(04): 121-133 .
    42. 强帆,张暖宗,朱兴华,蔡佳乐. 勉县黄龙垭滑坡应急处置与效果分析. 云南水力发电. 2022(08): 85-89 .
    43. 田媛,巨能攀,解明礼,刘秀伟,何朝阳. 滑坡编录表达模式对易发性评价结果的影响. 成都理工大学学报(自然科学版). 2022(05): 606-615 .
    44. 胡东雨,王运生,吴昊宸,赵方彬,寇瑞斌,冯卓. 基于SBAS-InSAR技术的小金川两岸滑坡隐患识别. 大地测量与地球动力学. 2022(11): 1171-1176 .
    45. 黄海峰,薛蓉花,赵蓓蓓,易武,邓永煌,董志鸿,柳青,易庆林,张国栋. 孕灾机理与综合遥感结合的三峡库首顺层岩质滑坡隐患识别. 测绘学报. 2022(10): 2056-2068 .

    Other cited types(36)

Catalog

    Article views (2331) PDF downloads (407) Cited by(81)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return