Citation: | XU Qiang, LU Huiyan, LI Weile, DONG Xiujun, GUO Chen. Types of Potential Landslide and Corresponding Identification Technologies[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 377-387. DOI: 10.13203/j.whugis20210618 |
[1] |
许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报·信息科学版, 2019, 44(7): 957-966 doi: 10.13203/j.whugis20190088
Xu Qiang, Dong Xiujun, Li Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warning for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966 doi: 10.13203/j.whugis20190088
|
[2] |
许强. 构建新"三查"体系, 创新地灾防治新机制[N]. 中国矿业报, 2018-03-12
Xu Qiang. Constructing a New"Three-Check"System, Innovating New Mechanisms for Disaster Prevention and Control[N]. China Mining Newspaper, 2018-03-12
|
[3] |
葛大庆. 地质灾害早期识别与监测预警中的综合遥感[J]. 城市与减灾, 2018(6): 53-60 doi: 10.3969/j.issn.1671-0495.2018.06.011
Ge Daqing. Integrated Remote Sensing Application in Early Identification, Monitoring of Geological Hazards [J]. City and Disaster Reduction, 2018(6): 53-60 doi: 10.3969/j.issn.1671-0495.2018.06.011
|
[4] |
葛大庆, 戴可人, 郭兆成, 等. 重大地质灾害隐患早期识别中的思考与建议[J]. 武汉大学学报·信息科学版, 2019, 44(7): 949-956 doi: 10.13203/j.whugis20190094
Ge Daqing, Dai Keren, Guo Zhaocheng, et al. Early Identification of Serious Geological Hazards with Integrated Remote Sensing Technologies: Thoughts and Recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 949-956 doi: 10.13203/j.whugis20190094
|
[5] |
李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策[J]. 武汉大学学报·信息科学版, 2019, 44(7): 967-979 doi: 10.13203/j.whugis20190098
Li Zhenhong, Song Chuang, Yu Chen, et al. Application of Satellite Radar Remote Sensing to Landslide Detection and Monitoring: Challenges and Solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979 doi: 10.13203/j.whugis20190098
|
[6] |
张路, 廖明生, 董杰, 等. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别: 以四川丹巴为例[J]. 武汉大学学报·信息科学版, 2018, 43(12): 2039-2049 doi: 10.13203/j.whugis20180181
Zhang Lu, Liao Mingsheng, Dong Jie, et al. Early Dectection of Landslide Hazards in Mountains Areas of West China Using Time Series SAR Interferometry: A Case Study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2039-2049 doi: 10.13203/j.whugis20180181
|
[7] |
Dong J, Liao M, Xu Q, et al. Detection and Displacement Characterization of Landslides Using Multi-temporal Satellite SAR Interferometry: A Case Study of Danba County in the Dadu River Basin [J]. Engineering Geology, 2018, 240(5): 94-109 http://www.sciencedirect.com/science/article/pii/S0013795217310736/
|
[8] |
Dong J, Zhang L, Tang M, et al. Mapping Landslide Surface Displacements with Time Series SAR Interferometry by Combining Persistent and Distributed Scatterers: A Case Study of Jiaju Landslide in Danba, China[J]. Remote Sensing of Environment, 2018, 205: 180-198 doi: 10.1016/j.rse.2017.11.022
|
[9] |
赵超英, 刘晓杰, 张勤, 等. 甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J]. 武汉大学学报·信息科学版, 2019, 44(7): 996-1007 doi: 10.13203/j.whugis20190072
Zhao Chaoying, Liu Xiaojie, Zhang Qin, et al. Research on Loess Landslide Identification, Monitoring and Failure Mode with InSAR Technique in Heifangtai, Gansu[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 996-1007 doi: 10.13203/j.whugis20190072
|
[10] |
陆会燕, 李为乐, 许强, 等. 光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J]. 武汉大学学报·信息科学版, 2019, 44(9): 1342-1354 doi: 10.13203/j.whugis20190086
Lu Huiyan, Li Weile, Xu Qiang, et al. Early Detection of Landslides in the Upstream and Downstream Areas of the Baige Landslide, the Jinsha River Based on Optical Remote Sensing and InSAR Technologies[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1342-1354 doi: 10.13203/j.whugis20190086
|
[11] |
许强. 对地质灾害隐患早期识别相关问题的认识与思考[J]. 武汉大学学报·信息科学版, 2020, 45(11): 1651-1659 doi: 10.13203/j.whugis20200043
Xu Qiang. Understanding and Consideration of Related Issues in Early Identification of Potential Geohazards[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1651-1659 doi: 10.13203/j.whugis20200043
|
[12] |
郭晨, 许强, 董秀军, 等. 复杂山区地质灾害机载激光雷达识别研究[J]. 武汉大学学报·信息科学版, 2021, 46(10): 1538-1547 doi: 10.13203/j.whugis20210121
Guo Chen, Xu Qiang, Dong Xiujun, et al. Geohazard Recognition by Airborne LiDAR Technology in Complex Mountain Areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1538-1547 doi: 10.13203/j.whugis20210121
|
[13] |
李为乐, 许强, 陆会燕, 等. 大型岩质滑坡形变历史回溯及其启示[J]. 武汉大学学报· 信息科学版, 2019, 44(7): 1043-1053 doi: 10.13203/j.whugis20190090
Li Weile, Xu Qiang, Lu Huiyan, et al. Tracking the Deformation History of Large-Scale Rocky Landslides and Its Enlightenment[J]. Geomatics and Information Science of Wuhan University, 2019, 44 (7): 1043-1053 doi: 10.13203/j.whugis20190090
|
[14] |
许强, 汤明高, 徐开祥, 等. 滑坡时空演化规律及预警预报研究[J]. 岩石力学与工程学报, 2008, 27(6): 1104-1112 doi: 10.3321/j.issn:1000-6915.2008.06.003
Xu Qiang, Tang Minggao, Xu Kaixiang, et al. Research on Space-Time Evolution Laws and Early Warning-Prediction of Landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27 (6): 1104-1112 doi: 10.3321/j.issn:1000-6915.2008.06.003
|
[15] |
郑光, 许强, 刘秀伟, 等. 2019年7月23日贵州水城县鸡场镇滑坡-碎屑流特征与成因机理研究[J]. 工程地质学报, 2020, 28(3): 541-556 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202003012.htm
Zheng Guang, Xu Qiang, Liu Xiuwei, et al. The Jichang Landslide on July 23, 2019 in Shuicheng, Guizhou: Characteristics and Failure Mechanism[J]. Journal of Engineering Geology, 2020, 28(3): 541-556 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202003012.htm
|
[16] |
Kääb A, Leinss S, Gilbert A, et al. Massive Collapse of Two Glaciers in Western Tibet in 2016 After Surge-Like Instability[J]. Nature Geoscience, 2018, 11: 114-120 doi: 10.1038/s41561-017-0039-7
|
[17] |
Colesanti C, Wasowski J. Investigating Landslides with Space-Borne Synthetic Aperture Radar(SAR) Interferometry[J]. Engineering Geology, 2006, 88 (3): 173-199 http://www.onacademic.com/detail/journal_1000034072780510_48ea.html
|
[18] |
Zhang Y, Meng X, Chen G, et al. Detection of Geohazards in the Bailong River Basin Using Synthetic Aperture Radar Interferometry[J]. Landslides, 2016, 13(5): 1273-1284 doi: 10.1007/s10346-015-0660-8
|
[19] |
Liu X, Zhao C, Zhang Q, et al. Integration of Sentinel-1 and ALOS/PALSAR-2 SAR Datasets for Mapping Active Landslides Along the Jinsha River Corridor, China[J]. Engineering Geology, 2021, 284: 106033 doi: 10.1016/j.enggeo.2021.106033
|
[20] |
熊盛青. 发展中国航空物探技术有关问题的思考[J]. 中国地质, 2009, 36(6): 1366-1374 doi: 10.3969/j.issn.1000-3657.2009.06.018
Xiong Shengqing. The Strategic Consideration of the Development of China ? s Airborne Geophysical Technology[J]. Geology in China, 2009, 36(6): 1366-1374 doi: 10.3969/j.issn.1000-3657.2009.06.018
|
[21] |
Langhammer L, Rabenstein L, Schmid L, et al. Glacier Bed Surveying with Helicopter-Borne Dual-polarization Ground-penetrating Radar[J]. Journal of Glaciology, 2019, 65(249): 123-135 doi: 10.1017/jog.2018.99
|
[22] |
Nabighian M. Electromagnetic Methods in Applied Geophysicstheroy[J]. Exploration Geophysicists, 1987(1): 217-231 http://mtnet.dias.ie/working_group/papers/EMWKSHP_ReviewVolumes/1978Murnau/Vozoff_1978MurnauReview_SG_1980.pdf
|
[23] |
Wu X, Fang G, Xue G, et al. The Development and Applications of the Helicopter-borne Transient Electromagnetic System CAS-HTEM[J]. Journal of Enviromental and Engineering Geophysics, 2019, 24(4): 653-663 doi: 10.2113/JEEG24.4.653
|
[24] |
王仕兴, 易国财, 王绪本, 等. 基于分段二分搜索算法的半航空瞬变电磁电导率深度快速成像方法研究[J]. 地球物理学进展, 2021, 36(3): 1317-1324 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202103047.htm
Wang Shixing, Yi Guocai, Wang Xuben, et al. Research on the Semi-airborne Transient Electromagnetic Conductivity Depth Rapid Imaging Method Based on Segmented Binary Search Algorithm[J]. Progress in Geophysics, 2021, 36(3): 1317-1324 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202103047.htm
|
[1] | XU Qiang, DONG Xiujun, LI Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966. DOI: 10.13203/j.whugis20190088 |
[2] | YU Caixia, WANG Jiayao, HUANG Wenqian, XU Jian. An Improved Binary Image Method of Extracting Shoreline Based on LiDAR Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 897-903. DOI: 10.13203/j.whugis20150103 |
[3] | Wu Jun, Li Wei, Peng Zhiyong, Liu Rong, Tang Min. Integrating Morphological Grayscale Reconstruction and TIN Models for High-quality Filtering of Airborne LiDAR Points[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11): 1298-1303. |
[4] | WANG Yongbo, YANG Huachao, LIU Yanhua, NIU Xiaonan. Linear-Feature-Constrained Registration of LiDAR Point Cloud via Quaternion[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1057-1062. |
[5] | CHENG Liang, LI Manchun, GONG Jianya, SHAN Jie. 3D Reconstruction of Building Rooftops from LiDAR Data and Orthophoto[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 208-211,216. |
[6] | SUN Jie, MA Hongchao, TANG Xuan. Optimization of LiDAR System Ortho-image Mosaic Seam-Line[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 325-328. |
[7] | SHEN Jing, LIU Jiping, LIN Xiangguo. Airborne LiDAR Data Filtering by Morphological Reconstruction Method[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 167-170. |
[8] | WANG Zongyue, MA Hongchao, PENG Jiangui, GAO Guang. A Smooth Contour Generation Method Based on LiDAR Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1318-1321. |
[9] | WANG Zongyue, MA Hongchao, XU Honggen, WU Jianwei. An Approach for Distributed Organization and Paralleled Access of LiDAR Point Clouds Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 936-939. |
[10] | HUANG Xianfeng, Gunho Sohn, WANG Xiao, ZHANG Fan. Roof Detection Using LiDAR Data Based on Points' Normal with Weight[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 24-27. |