LIU Yang, XU Caijun, WEN Yangmao. InSAR Observation of Menyuan Mw5.9 Earthquake Deformation and Deep Geometry of Regional Fault Zone[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1035-1042. DOI: 10.13203/j.whugis20190069
Citation: LIU Yang, XU Caijun, WEN Yangmao. InSAR Observation of Menyuan Mw5.9 Earthquake Deformation and Deep Geometry of Regional Fault Zone[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1035-1042. DOI: 10.13203/j.whugis20190069

InSAR Observation of Menyuan Mw5.9 Earthquake Deformation and Deep Geometry of Regional Fault Zone

Funds: 

The National Natural Science Foundation of China 41874011

The National Natural Science Foundation of China 41774011

The National Natural Science Foundation of China 41431069

the National Key Research and Development Program of China 2018YFC1503603

More Information
  • Author Bio:

    LIU Yang, PhD, associate professor, specializes in InSAR data processing and geophysical interpretation. E-mail: Yang.Liu@sgg.whu.edu.cn

  • Received Date: March 07, 2019
  • Published Date: July 04, 2019
  • By using Sentinel-1A ascending and descending synthetic aperture radar (SAR) data, this paper extracts the high-precision interferometric SAR (InSAR) coseismic deformation of the 2016 Menyuan Mw5.9 earthquake, inverts the fault geometry and slip distribution using simplex method and nonnegative least squares method, and constructs the deep geometry model of regional fault zone. The results show that coseismic deformation of the Menyuan Mw5.9 earthquake is dominated by surface uplift, and the maximums along the line-of-sight direction of ascending and descending tracks are 5.3 cm and 7.1 cm respectively. The fault strike and dip angles are 133° and 43° respectively. The seismic slip is dominated by thrust component, mainly occurring in 6.14-12.28 km underground. The maximum slip is about 0.5 m, the average slip angle is 66.85°, and the earthquake moment is 1.0×1018 N·m (Mw5.94). The fitting residual root mean square of deformation observations is 0.36 cm. The deep geometry of the regional fault zone is characterized by flower structure, which inclines to the south-west as a whole. The Menyuan earthquake rupture is a blind fault which does not appear on the surface in the flower structure. Relevant results can provide the reference for studying regional crustal movement and deformation, active fault and earthquake preparation and occurrence.
  • [1]
    何文贵, 刘百篪, 袁道阳, 等.冷龙岭活动断裂的滑动速率研究[J].西北地震学报, 2000, 22(1): 90-97 doi: 10.3969/j.issn.1000-0844.2000.01.017

    He Wengui, Liu Baichi, Yuan Daoyang, et al. Research on Slip Rates of the Lenglongling Active Fault Zone[J].Northewestern Seismological Journal, 2000, 22(1): 90-97 doi: 10.3969/j.issn.1000-0844.2000.01.017
    [2]
    邓起东, 张培震, 冉勇康, 等.中国活动构造基本特征[J].中国科学(D辑), 2002, 32(12): 1 020-1 031 http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200212007

    Deng Qidong, Zhang Peizhen, Ran Yongkang, et al. Basic Characteristics of Active Tectonics of China[J].Science in China(Series D), 2002, 32(12): 1 020-1 031 http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200212007
    [3]
    胡朝忠, 杨攀新, 李智敏, 等. 2016年1月21日青海门源6.4级地震的发震机制探讨[J].地球物理学报, 2016, 59(5): 1 637-1 646 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201605009

    Hu Chaozhong, Yang Panxin, Li Zhimin, et al. Seismogenic Mechanism of the 21 January 2016 Menyuan, Qinghai Ms6.4 Earthquake[J].Chinese Journal of Geophysics, 2016, 59(5): 1 637-1 646 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201605009
    [4]
    郭鹏, 韩竹军, 安艳芬, 等.冷龙岭断裂系活动性与2016年门源6.4级地震构造研究[J].中国科学:地球科学, 2017, 47(5): 617-630 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201705009

    Guo Peng, Han Zhujun, An Yanfen, et al. Activity of the Lenglongling Fault System and Seismotecto-nics of the 2016 Ms6.4 Menyuan Earthquake[J].Science China Earth Sciences, 2017, 47(5): 617-630 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201705009
    [5]
    姜文亮, 李永生, 田云锋, 等.冷龙岭地区2016年青海门源6.4级地震发震构造特征[J].地震地质, 2017, 39(3): 536-549 doi: 10.3969/j.issn.0253-4967.2017.03.007

    Jiang Wenliang, Li Yongsheng, Tian Yunfeng, et al. Research of Seismogenic Structure of the Men-yuan Ms6.4 Earthquake on January 21, 2016 in Lenglongling Area of the NE Tibetan Plateau[J].Seismology and Geology, 2017, 39(3): 536-549 doi: 10.3969/j.issn.0253-4967.2017.03.007
    [6]
    Li Y, Jiang W, Zhang J, et al. Space Geodetic Observations and Modeling of 2016 Mw5.9 Menyuan Earthquake: Implications on Seismogenic Tectonic Motion[J]. Remote Sensing, 2016, 8(6): 519 doi: 10.3390/rs8060519
    [7]
    郑博文. 2016年门源地震InSAR形变场及发震断层参数反演[D].北京: 中国地震局地质研究所, 2017 http://cdmd.cnki.com.cn/Article/CDMD-85402-1017283288.htm

    Zheng Bowen. Fault Slip Inversion of 2016 Men-yuan Earthquake from InSAR Deformation Fields by Multi-orbit Sentinel-1A Images[D]. Beijing: Institude of Geology, China Earthquake Administration, 2017 http://cdmd.cnki.com.cn/Article/CDMD-85402-1017283288.htm
    [8]
    黄浩, 付虹, 沙成宁, 等. 2016年青海门源Ms6.4地震重定位[J].地震学报, 2017, 39(2): 176-187 http://d.old.wanfangdata.com.cn/Periodical/dizhen201702002

    Huang Hao, Fu Hong, Sha Chengning, et al. Relocation of the 2016 Ms6.4 Men-yuan, Qinghai Earthquake[J].Acta Seismologica Sinica, 2017, 39(2): 176-187 http://d.old.wanfangdata.com.cn/Periodical/dizhen201702002
    [9]
    张明, 高涵, 牛玉芬, 等. 2016年门源地震震源机制DInSAR同震形变反演[J].地球物理学进展, 2017, 32(3): 1 089-1 094 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201703019

    Zhang Ming, Gao Han, Niu Yufen, et al. Coseismic Deformation Focal Mechanisms Inversion for 2016 Menyuan Earthquake by DInSAR Observations[J].Progress in Geophysics, 2017, 32(3): 1 089-1 094 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201703019
    [10]
    雷东宁, 刘杰, 刘姝妹, 等. 2016年1月21日青海门源M 6.4地震发震构造模式[J].地震地质, 2018, 40(1): 107-120 doi: 10.3969/j.issn.0253-4967.2018.01.009

    Lei Dongning, Liu Jie, Liu Shumei, et al. Discussion on the Seismogenic Structure of the 2016 Men-yuan M 6.4 Earthquake in Menyuan, Qinghai[J].Seismology and Geology, 2018, 40(1): 107-120 doi: 10.3969/j.issn.0253-4967.2018.01.009
    [11]
    Wang H, Liu-Zeng J, Ng A H M, et al. Sentinel-1 Observations of the 2016 Menyuan Earthquake: A Buried Reverse Event Linked to the Left-Lateral Haiyuan Fault[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 61: 14-21 doi: 10.1016/j.jag.2017.04.011
    [12]
    Xiong W, Chen W, Zhao B, et al. Insight into the 2016 Menyuan Mw5.9 Earthquake with InSAR: A Blind Reverse Event Promoted by Historical Earthquakes[J]. Pure and Applied Geophysics, 2019, 176: 577-591 doi: 10.1007/s00024-018-2000-0
    [13]
    Wright T J, Lu Z, Wicks C. Source Model for the Mw6.7, 23 October 2002, Nenana Mountain Earthquake (Alaska) from InSAR[J]. Geophysical Research Letters, 2003, 30(18): 1 974 http://cn.bing.com/academic/profile?id=61705caed5a624908719f664363be939&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    Li Z, Elliott J R, Feng W, et al. The 2010 Mw6.8 Yushu (Qinghai, China) Earthquake: Constraints Provided by InSAR and Body Wave Seismology[J]. Journal of Geophysical Research, 2011, 116(B10): B10302 doi: 10.1029/2011JB008358
    [15]
    Weston J, Ferreira A M, Funning G J. Systematic Comparisons of Earthquake Source Models Determined Using InSAR and Seismic Data[J]. Tectonophysics, 2012, 532-535: 61-81 doi: 10.1016/j.tecto.2012.02.001
    [16]
    刘洋, 许才军, 温扬茂, 等. 2008年大柴旦Mw6.3级地震的InSAR同震形变观测及断层参数反演[J].测绘学报, 2015, 44(11): 1 202-1 209 http://d.old.wanfangdata.com.cn/Periodical/chxb201511006

    Liu Yang, Xu Caijun, Wen Yangmao, et al. The InSAR Coseismic Deformation Observations and Fault Parameter Inversion of the 2008 Dachaidan Mw6.3 Earthquake[J].Acta Geodaetica et Cartographica Sinica, 2015, 44(11): 1 202-1 209 http://d.old.wanfangdata.com.cn/Periodical/chxb201511006
    [17]
    许才军, 邓长勇, 周力璇.利用方差分量估计的地震同震滑动分布反演[J].武汉大学学报·信息科学版, 2016, 41(1): 37-44 http://ch.whu.edu.cn/CN/abstract/abstract3431.shtml

    Xu Caijun, Deng Changyong, Zhou Lixuan. Coseismic Slip Distribution Inversion Method Based on the Variance Component Estimation[J].Geomatics and Information Science of Wuhan University, 2016, 41(1): 37-44 http://ch.whu.edu.cn/CN/abstract/abstract3431.shtml
    [18]
    温扬茂, 冯怡婷.地震破裂模型约束的中国阿里地震三维形变场[J].武汉大学学报·信息科学版, 2018, 43(9): 1 369-1 375 http://ch.whu.edu.cn/CN/abstract/abstract6199.shtml

    Wen Yangmao, Feng Yiting. Three-Dimensional Deformation Field of Ali Earthquake from InSAR Observations and Earthquake Rupture Model[J].Geomatics and Information Science of Wuhan University, 2018, 43(9): 1 369-1 375 http://ch.whu.edu.cn/CN/abstract/abstract6199.shtml
    [19]
    Lawson C L, Hanson R J. Solving Least Squares Problems[J]. International Journal of Computer Mathematics, 1995, 77: 105-116 http://d.old.wanfangdata.com.cn/Periodical/yysxhlx-e201203009
    [20]
    苏小宁, 王振, 孟国杰, 等. GPS观测的2015年尼泊尔Ms8.1级地震震前应变积累及同震变形特征[J].科学通报, 2015, 60(22): 2 115-2 123 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201522007

    Su Xiaoning, Wang Zhen, Meng Guojie, et al. Pre-seismic Strain Accumulation and Co-seismic Deformation of the 2015 Nepal Ms8.1 Earthquake Observed by GPS[J].China Science Bulletin, 2015, 60(22): 2 115-2 123 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201522007
    [21]
    Werner C, Wegmüller U, Strozzi T, et al. Gamma SAR and Interferometric Processing Software[C]. ERS-ENVISAT Symposium, Gothenburg, Sweden, 2000 https://wenku.baidu.com/view/ffb48a0af78a6529647d5354.html
    [22]
    Farr T G, Rosen P A, Caro E, et al. The Shuttle Radar Topography Mission[J]. Reviews of Geophysics, 2007, 45: RG2004 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_dcbab017f5e8e5b8ef41432c8377aabd
    [23]
    Goldstein R M, Werner C L. Radar Interferogram Filtering for Geophysical Applications[J]. Geophysical Research Letters, 1998, 25(21): 4 035-4 038 doi: 10.1029/1998GL900033
    [24]
    Goldstein R, Zebker H, Werner C. Satellite Radar Interferometry: Two-Dimensional Phase Unwrapping[J].Radio Science, 1988, 23(4): 713-720 doi: 10.1029/RS023i004p00713
    [25]
    Jónsson S, Zebker H, Segall P, et al. Fault Slip Distribution of the 1999 Mw7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1 377-1 389 doi: 10.1785/0120000922
    [26]
    Okada Y. Surface Deformation Due to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1 135-1 154 http://cn.bing.com/academic/profile?id=819f2a013c19c9434aaefa8e5bcb6ba5&encoded=0&v=paper_preview&mkt=zh-cn
    [27]
    Xu C, Liu Y, Wen Y, et al. Coseismic Slip Distribution of the 2008 Mw7.9 Wenchuan Earthquake from Joint Inversion of GPS and InSAR Data[J]. Bulletin of the Seismological Society of America, 2010, 100(5B): 2 736-2 749 doi: 10.1785/0120090253
    [28]
    陈文彬.河西走廊及邻近地区最新构造变形基本特征及构造成因分析[D].北京: 中国地震局地质研究所, 2003 http://cdmd.cnki.com.cn/Article/CDMD-85402-2004096204.htm

    Chen Wenbin. Principal Features of Tectonic Deformation and Their Generation Mechanism in the Hexi Corridor and Its Adjacent Regions Since Late Quaternary[D]. Beijing: Institude of Geology, China Earthquake Administration, 2003 http://cdmd.cnki.com.cn/Article/CDMD-85402-2004096204.htm
  • Cited by

    Periodical cited type(19)

    1. 李雨森,李为乐,许强,许善淼,王运生. 2023年积石山Ms6.2级地震InSAR同震形变探测与断层滑动分布反演. 成都理工大学学报(自然科学版). 2024(01): 22-32+75 .
    2. 王乐洋,孙龙翔,许光煜. 利用GPS数据反演震源参数的单纯形组合加权距离灰狼优化算法. 武汉大学学报(信息科学版). 2024(07): 1140-1154 .
    3. 王乐洋,席灿. 贝叶斯框架下利用GPS数据反演震源参数的一种改进MCMC算法. 地球物理学报. 2024(09): 3367-3385 .
    4. 程燕,蒋亚楠,侯中健,曾锐,罗袆沅. 2016年和2022年青海门源强震活动的InSAR形变观测与区域强震危险性分析. 地质力学学报. 2024(06): 965-977 .
    5. 于仪,李雪,孙振,刘珠妹,张朝阳. 2022年青海门源地震震源机制与同震滑动分布研究. 大地测量与地球动力学. 2023(01): 46-51 .
    6. 刘洋,李航昊,熊露雲,温扬茂,杨九元. 联合地震位错模型和ESISTEM方法提取地震同震三维形变场. 武汉大学学报(信息科学版). 2023(03): 349-358+395 .
    7. 钟储汉. 基于InSAR技术的输气管道工程穿越煤矿采空区形变特征分析研究. 石油工程建设. 2023(03): 10-16 .
    8. 李媛,杨周胜,庞亚瑾,梁洪宝,刘峡. 2022年门源M_S6.9地震前断层活动及应力状态的数值模拟. 地震地质. 2023(06): 1286-1308 .
    9. 颜丙囤,季灵运,蒋锋云,殷海涛,陈其峰,连凯旋. InSAR数据约束的2022年1月8日青海门源M_S6.9地震发震构造研究. 地震工程学报. 2022(02): 450-457 .
    10. 郭东美,何慧优. 应用全张量重力梯度组合识别并提取中国南海断裂. 武汉大学学报(信息科学版). 2022(05): 738-746 .
    11. 李振洪,韩炳权,刘振江,张苗苗,余琛,陈博,刘海辉,杜静,张双成,朱武,张勤,彭建兵. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布. 武汉大学学报(信息科学版). 2022(06): 887-897 .
    12. 何秀凤,高壮,肖儒雅,罗海滨,贾东振,章浙涛. InSAR与北斗/GNSS综合方法监测地表形变研究现状与展望. 测绘学报. 2022(07): 1338-1355 .
    13. 梁斌,魏冠军. 利用InSAR技术观测台湾花莲地震断层滑动与运动机理分析. 测绘通报. 2022(09): 68-73 .
    14. 金鑫田,王世杰,姜鑫,张兰军. 2022年青海门源M_W6.9地震同震形变及断层滑动分布反演. 地球物理学进展. 2022(06): 2267-2274 .
    15. 付阿龙,安张辉,范莹莹,侯泽宇. 2022年1月8日青海门源县M_S 6.9地震地电场响应特征. 地震地磁观测与研究. 2022(06): 30-40 .
    16. 钟储汉,王强,王霞迎,张双成,牛玉芬. 基于InSAR技术的东营市地面沉降监测及多诱发因素分析. 大地测量与地球动力学. 2021(07): 727-731 .
    17. 温少妍,李成龙,李金. 2020年1月19日新疆伽师M_S6.4地震InSAR同震形变场特征及发震构造初步探讨. 内陆地震. 2020(01): 1-9 .
    18. 徐小波,连达军,白俊武. 基于CRInSAR与PSInSAR技术监测断裂带震间形变研究. 苏州科技大学学报(自然科学版). 2020(04): 51-58 .
    19. 万秀红,屠泓为,姚生海,殷翔,蔡丽雯. InSAR技术在青海地区地震中的应用研究. 高原地震. 2019(04): 14-20 .

    Other cited types(14)

Catalog

    Article views (1786) PDF downloads (273) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return