CHONG Yang, CHAI Hongzhou, SU Mingxiao, GUO Yunfei, CHEN Jie. RAE-PEKF Matching Algorithm Based on Measurement Residuals to Estimate Residuals Covariance[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 179-188. DOI: 10.13203/j.whugis20180264
Citation: CHONG Yang, CHAI Hongzhou, SU Mingxiao, GUO Yunfei, CHEN Jie. RAE-PEKF Matching Algorithm Based on Measurement Residuals to Estimate Residuals Covariance[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 179-188. DOI: 10.13203/j.whugis20180264

RAE-PEKF Matching Algorithm Based on Measurement Residuals to Estimate Residuals Covariance

Funds: 

The National Natural Science Foundation of China 41476087

The National Natural Science Foundation of China 41574010

The National Natural Science Foundation of China 41904039

the Open Research Fund of State Key Laboratory of Geo-information Engineering SKLGIE2017-M-2-6

More Information
  • Author Bio:

    CHONG Yang, PhD candidate, specializes in the key technology of geomagnetic navigation and geomagnetic field modeling. E-mail:chongyang_geodesy@outlook.com

  • Corresponding author:

    CHAI Hongzhou, PhD, professor. E-mail:chaihz1969@163.com

  • Received Date: July 01, 2019
  • Published Date: February 04, 2020
  • Geomagnetic matching technology can provide passive external resource of correction information for underwater vehicle, which improves the long voyage navigation accuracy of inertial navigation system. The filtering matching algorithm is the core technology in geomagnetic aided inertial navigation, which can effectively mitigate the influence from the uncertainty of geomagnetic observation noise. Based on track simulation data, the earth magnetic anomaly grid 2 (EMAG2) is selected as reference map in this paper. To properly model the observation noise of geomagnetic anomaly in unpredictable geomagnetic environment and the error from measuring instruments, this paper proposes the matching algorithm of geomagnetic anomaly filter based on residual errors. The observation noise variance is estimated adaptively through the residual-based adaptive estimation (RAE) filter. Meanwhile, the availability and robustness of the algorithm are improved by combining the optimal filter selection criteria. The validation experiments of RAE filter are conducted in different maritime space of the South China Sea. It is shown that the drifting errors of inertial navigation system in longitude and latitude can be reduced based on the RAE filter. Moreover, the positioning accuracy and reliability of the aided navigation system can be improved significantly. In obvious geomagnetic fluctuating region under the simulation condition, position accuracy is raised to 0.751 53 n mile and 0.778 45 n mile respectively in latitude and longitude directions through RAE filter.
  • [1]
    Zheng H, Wang H, Wu L, et al. Simulation Research on Gravity-Geomagnetism Combined Aided Underwater Navigation[J]. Journal of Navigation, 2013, 66(1):83-98 doi: 10.1017/S0373463312000343
    [2]
    彭富清, 霍立业.海洋地球物理导航[J].地球物理学进展, 2007, 22(3):759-764 doi: 10.3969/j.issn.1004-2903.2007.03.015

    Peng Fuqing, Huo Liye. Marine Geophysical Navigation[J]. Progress in Geophysics, 2007, 22(3):759-764 doi: 10.3969/j.issn.1004-2903.2007.03.015
    [3]
    Goldenberg F. Geomagnetic Navigation Beyond the Magnetic Compass[C]. Position, Location, and Navigation Symposium, Monterey, California, USA, 2006
    [4]
    Tangye N. Magnetic Compasses and Magnetometers, by Alfred Hine[J]. Physics Bulletin, 1969, 20(6):238-239 http://www.researchgate.net/publication/275980417_Magnetic_Compasses_and_Magnetometers
    [5]
    Titterton D, Weston J. Strapdown Inertial Navigation Technology[J]. Aerospace and Electronic Systems Magazine IEEE, 2004, 20(7):33-34 http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb200311038
    [6]
    Psiaki M L. Autonomous Low-Earth-Orbit Determination from Magnetometer and Sun Sensor Data[J]. Journal of Guidance Control and Dynamics, 2012, 22(2):296-304 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ZqpfUeDUtTOO7TLNqsw580v2OXd9N63efgOwn4Pbv+8=
    [7]
    Deutschmann J K, Bar-Itzhack I Y. Evaluation of Attitude and Orbit Estimation Using Actual Earth Magnetic Field Data[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(3):616-623 doi: 10.2514/2.4753
    [8]
    Kim S, Chun J. Satellite Orbit Determination Using a Magnetometer-Based Bootstrap Filter[C]. American Control Conference, Chicago, Illinois, USA, 2000
    [9]
    Kwon W, Roh K S, Sung H K. Particle Filter-Based Heading Estimation Using Magnetic Compasses for Mobile Robot Navigation[C]. IEEE International Conference on Robotics and Automation, Orlando, Florida, USA, 2006
    [10]
    Armstrong B, Wolbrecht E, Edwards D B. AUV Navigation in the Presence of a Magnetic Disturbance with an Extended Kalman Filter[C]. Oceans Conference, Sydney, Australia, 2010
    [11]
    王向磊, 田颜锋.基于地磁场的自主导航研究[J].地球物理学报, 2010, 53(11):2724-2731 http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201011020

    Wang Xianglei, Tian Yanfeng. Autonomous Navigation Based Geomagnetic Research[J]. Chinese Journal of Geophysics, 2010, 53(11):2724-2731 http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201011020
    [12]
    赵建虎, 张红梅, 王爱学, 等.利用ICCP的水下地磁匹配导航算法[J].武汉大学学报·信息科学版, 2010, 35(3):261-264 http://ch.whu.edu.cn/CN/abstract/abstract865.shtml

    Zhao Jianhu, Zhang Hongmei, Wang Aixue, et al. Underwater Geomagnetic Navigation Based on ICCP[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3):261-264 http://ch.whu.edu.cn/CN/abstract/abstract865.shtml
    [13]
    郭才发, 赵星, 蔡洪.有色噪声作用下的INS/地磁组合导航算法研究[J].飞行器测控学报, 2010, 29(4):84-88 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxqckxb201004019

    Guo Caifa, Zhao Xing, Cai Hong. Analysis of Algorithm for INS/Geomagnetic Integrated Navigation Under Colored Noise[J]. Journal of Spacecraft TT and C Technology, 2010, 29(4):84-88 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxqckxb201004019
    [14]
    郭才发, 胡正东, 赵星, 等.自适应滤波在磁暴期间地磁导航中的应用[J].宇航学报, 2010, 31(8):1927-1932 doi: 10.3873/j.issn.1000-1328.2010.08.006

    Guo Caifa, Hu Zhengdong, Zhao Xing, et al. Application of Adaptive Filter in Geomagnetic Navigation Under Magnetic Storms[J]. Journal of Astronautics, 2010, 31(8):1927-1932 doi: 10.3873/j.issn.1000-1328.2010.08.006
    [15]
    施桂国, 周军, 葛致磊.基于无迹卡尔曼滤波的巡航导弹地磁自主导航方法[J].兵工学报, 2008, 29(9):1088-1093 doi: 10.3321/j.issn:1000-1093.2008.09.014

    Shi Guiguo, Zhou Jun, Ge Zhilei. Geomagnetic Autonomous Navigation Technology of Cruise Missile Based on the Unscented Kalman Filter[J]. Acta Armamentarii, 2008, 29(9):1088-1093 doi: 10.3321/j.issn:1000-1093.2008.09.014
    [16]
    王胜平.水下地磁匹配导航定位关键技术研究[D].武汉: 武汉大学, 2011 http://d.wanfangdata.com.cn/Periodical_chxb201301023.aspx

    Wang Shengping. Research on the Key Technical of Marine Geomagnetic Matching Navigation and Positioning[D]. Wuhan: Wuhan University, 2011 http://d.wanfangdata.com.cn/Periodical_chxb201301023.aspx
    [17]
    解伟男, 李清华, 奚伯齐, 等.基于迭代计算的地磁轮廓线匹配算法[J].中国惯性技术学报, 2015, 23(5):631-635 http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb201505013

    Xie Weinan, Li Qinghua, Xi Boqi, et al. Geomagnetic Contour Matching Algorithm Based on Iterative Method[J]. Journal of Chinese Inertial Technology, 2015, 23(5):631-635 http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb201505013
    [18]
    Liu Y, Wu M. Intelligent Geomagnetic Matching Method[C]. International Conference on Intelligent Computing and Integrated Systems, Guilin, China, 2010
    [19]
    Ma T, Chen L, Wu Z, et al. An Improved Iteration Method for Downward Continuation of Potential Fields[J]. International Proceedings of Computer Science & Information Tech, 2012, 37(4):399-402
    [20]
    Simon D. Kalman Filtering with State Constraints:A Survey of Linear and Nonlinear Algorithms[J]. IET Control Theory and Applications, 2010, 4(8):1303-1318 doi: 10.1049/iet-cta.2009.0032
    [21]
    黄朝艳, 田海冬, 赵华.地磁滤波导航技术的研究现状[J].科学技术与工程, 2013, 13(30):8976-8982 doi: 10.3969/j.issn.1671-1815.2013.30.021

    Huang Chaoyan, Tian Haidong, Zhao Hua. Present Research Situation of Geomagnetic Filter Navigation Technologies[J]. Science Technology and Engineering, 2013, 13(30):8976-8982 doi: 10.3969/j.issn.1671-1815.2013.30.021
    [22]
    张国良, 曾静.组合导航原理与技术[M].西安:西安交通大学出版社, 2008

    Zhang Guoliang, Zeng Jing. The Theory and Technology of Integrated Navigation System[M]. Xi'an:Xi'an Jiaotong University Press, 2008
    [23]
    许大欣.利用重力异常匹配技术实现潜艇导航[J].地球物理学报, 2005, 48(4):812-816 doi: 10.3321/j.issn:0001-5733.2005.04.012

    Xu Daxin. Using Gravity Anomaly Matching Techniques to Implement Submarine Navigation[J]. Chinese Journal of Geophysics, 2005, 48(4):812-816 doi: 10.3321/j.issn:0001-5733.2005.04.012
    [24]
    Mohamed A H, Schwarz K P. Adaptive Kalman Filtering for INS/GPS[J]. Journal of Geodesy, 1999, 73(4):193-203 doi: 10.1007/s001900050236
    [25]
    杨元喜.自适应动态导航定位[M].北京:测绘出版社, 2017

    Yang Yuanxi. Adaptive Navigation and Kinematic Positioning[M]. Beijing:Surveying and Mapping Press, 2017
    [26]
    Salmon B P, Kleynhans W, Bergh F V D, et al. Meta-Optimization of the Extended Kalman Filter's Parameters Through the Use of the Bias Variance Equilibrium Point Criterion[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(8):5072-5087
    [27]
    王伟, 李姗姗, 邢志斌, 等. RAE并行滤波的重力异常匹配算法[J].武汉大学学报·信息科学版, 2016, 41(12):1664-1670 http://ch.whu.edu.cn/CN/abstract/abstract5620.shtml

    Wang Wei, Li Shanshan, Xing Zhibin, et al. A Matching Algorithm Using Gravity Anomaly Based on the RAE Parallel Filtering[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12):1664-1670 http://ch.whu.edu.cn/CN/abstract/abstract5620.shtml
    [28]
    Maus S, Barckhausen U, Berkenbosch H, et al. EMAG2:A 2-Arc Min Resolution Earth Magnetic Anomaly Grid Compiled from Satellite, Airborne, and Marine Magnetic Measurements[J]. Geochemistry Geophysics Geosystems, 2009, 10(8):4918-4929 http://d.old.wanfangdata.com.cn/Periodical/dqwlxjz201204063
  • Related Articles

    [1]ZHANG Fan, CHAI Hongzhou, WANG Min, XIAO Guorui, ZHANG Qiankun, DU Zhenqiang. Undifferenced and Uncombined PPP Ambiguity Resolution Combined with GPS/GLONASS Triple-Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1900-1910. DOI: 10.13203/j.whugis20220315
    [2]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [3]SONG Weiwei, ZHAO Xinke, LOU Yidong, SUN Weibin, ZHAO Zhengyu. Performance Evaluation of BDS-3 PPP-B2b Service[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 408-415. DOI: 10.13203/j.whugis20200686
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]GU Shengfeng, DAI Chunqi, HE Chengpeng, FANG Lizhe, WANG Zihao. Analysis of Semi-tightly Coupled Multi-GNSS PPP-RTK/VIO for Vehicle Navigation in Urban Areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1852-1861. DOI: 10.13203/j.whugis20210615
    [6]YAO Yibin, FENG Xinying, PENG Wenjie, LIU Lei. Local Atmosphere Augmentation Based on CORS for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1739-1748. DOI: 10.13203/j.whugis20180131
    [7]SONG Chao, HAO Jinming. Instantaneous Re-convergence of Kinematic PPP by the Use of Relationship Between Multiple Receiver Ambiguity[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 595-599, 690. DOI: 10.13203/j.whugis20140747
    [8]GUO Fei, ZHANG Xiaohong. Processing Capacity for GPS Data with Clock Slip Using Online PPP Services[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1333-1336.
    [9]TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. The Research of Dual Frequency Solution Method for Single Frequency Precise Point Positioning(PPP) Based on SEID Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1187-1190.
    [10]ZHAO Jianhu, WANG Shengping, ZHANG Hongmei, WEN Weidong. Long-Distance and On-the-Fly GPS Tidal Level Measurement Based on GPS PPK/PPP[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 910-913.
  • Cited by

    Periodical cited type(13)

    1. 冯晓亮,陈欢,李厚芝. 不同观测环境中的多模GNSS数据质量自动化检测方法. 测绘工程. 2024(06): 56-61 .
    2. 刘嘉伟,孙保琪,韩蕊,张喆,王侃,袁海波,杨旭海. GNSS多系统RTK授时性能分析. 导航定位与授时. 2023(03): 49-58 .
    3. 王浩浩,郝明,庄文泉. GNSS实时卫星钟差估计在地震监测中的应用. 导航定位与授时. 2023(03): 108-116 .
    4. 周长江,余海锋,王林伟,雷云平,岳彩亚. 无频间钟偏差改正的BDS-2三频非组合PPP随机模型优化. 测绘通报. 2023(12): 164-168 .
    5. 潘丽静,刘翔,夏川茹,王雷雷. GNSS精密卫星钟差实时估计与分析. 城市勘测. 2021(06): 73-76 .
    6. 郭磊,王甫红,桑吉章,张万威. 一种新的利用历元间位置变化量约束的GNSS导航算法. 武汉大学学报(信息科学版). 2020(01): 21-27 .
    7. 陶钧,张柔. GPS/BeiDou/Galileo/GLONASS实时精密卫星钟差估计. 测绘地理信息. 2020(03): 102-106 .
    8. 黄观文,王浩浩,谢威,曹钰. GNSS实时卫星钟差估计技术进展. 导航定位与授时. 2020(05): 1-9 .
    9. 张浩,赵兴旺,陈佩文,谢毅. GPS/BDS卫星钟差融合解算模型及精度分析. 合肥工业大学学报(自然科学版). 2020(09): 1192-1196 .
    10. 叶珍,李浩军. GNSS卫星钟差估计与结果分析. 导航定位与授时. 2019(03): 88-94 .
    11. 盛剑锋,张彩红,谭凯. 一种全球导航卫星系统钟差估计优化方案的量化研究. 科学技术与工程. 2019(14): 14-21 .
    12. 王尔申,赵珩,曲萍萍,庞涛,孙军. 基于拉格朗日插值法的卫星导航空间信号精度评估算法. 沈阳航空航天大学学报. 2019(04): 43-48 .
    13. 李云,崔文刚. 精密单点定位技术发展及应用. 科学技术与工程. 2019(27): 1-11 .

    Other cited types(10)

Catalog

    Article views (2096) PDF downloads (77) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return