ZHANG Lu, LIAO Mingsheng, DONG Jie, XU Qiang, GONG Jianya. Early Detection of Landslide Hazards in Mountainous Areas of West China Using Time Series SAR Interferometry-A Case Study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2039-2049. DOI: 10.13203/j.whugis20180181
Citation: ZHANG Lu, LIAO Mingsheng, DONG Jie, XU Qiang, GONG Jianya. Early Detection of Landslide Hazards in Mountainous Areas of West China Using Time Series SAR Interferometry-A Case Study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2039-2049. DOI: 10.13203/j.whugis20180181

Early Detection of Landslide Hazards in Mountainous Areas of West China Using Time Series SAR Interferometry-A Case Study of Danba, Sichuan

Funds: 

The National Key Research and Development Program of China 2017YFB0502700

the National Natural Scien ce Foundation of China 61331016

the National Natural Scien ce Foundation of China 41774006

the National Natural Scien ce Foundation of China 41521002

the National Key Basic Research Program (973 Program) of China 2013CB733205

More Information
  • Author Bio:

    ZHANG Lu, PhD, professor, specializes in the theories and methods of radar remote sensing. E-mail:luzhang@whu.edu.cn

  • Received Date: September 03, 2018
  • Published Date: December 04, 2018
  • As the most frequent and devastating geohazard next to earthquakes, landslides are widely distributed in mountainous areas of west China, which makes early detection of landslides a vital task for geologic disaster prevention. Although time series SAR interferometry (InSAR) based on repeat-pass satellite SAR observations has shown a great potential in landslide detection, its performance is usually limited by factors such as vegetation coverage, which leads to low reliability of detection results. Aiming at this problem, we carry out a case study by employing the coherent scatterer InSAR (CSI) method to successfully detect 17 unstable slopes in Danba County in the upper reach of Dadu River Basin from archived ALOS PALSAR and ENVISAT ASAR datasets. The effectiveness and advantage of the CSI method are demonstrated by comparisons with other observation data as well as validation against field survey. And, major impact factors for the performance of time series InSAR analysis in landslide investigations and future research topics of high priority are summarized.
  • [1]
    黄润秋, 许强.中国典型灾难性滑坡[M].北京:科学出版社, 2008

    Huang Runqiu, Xu Qiang. Catastrophic Landslide Disasters in China[M]. Beijing:Science Press, 2008
    [2]
    许强, 李为乐, 董秀军, 等.四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J].岩石力学与工程学报, 2017, 11:2612-2628 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017112900068973

    Xu Qiang, Li Weile, Dong Xiujun, et al. The Xinmocun Landslide on June 24, 2017 in Diexi Mao-xian, Sichuan:Characteristics and Failure Mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 11:2612-2628 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017112900068973
    [3]
    殷跃平, 王文沛, 张楠, 等.强震区高位滑坡远程灾害特征研究——以四川茂县新磨滑坡为例[J].中国地质, 2017, 44(5):827-841 http://www.cqvip.com/QK/90050X/201705/7000404302.html

    Yin Yueping, Wang Wenpei, Zhang Nan, et al.Long Runout Geological Disaster Initiated by the Ridge-Top Rockslide in a Strong Earthquake Area:A Case Study of the Xinmo Landslide in Maoxian County, Sichuan Province[J]. Geology in China, 2017, 44(5):827-841 http://www.cqvip.com/QK/90050X/201705/7000404302.html
    [4]
    Su L, Hu K, Zhang W, et al. Characteristics and Triggering Mechanism of Xinmo Landslide on June 242017 in Sichuan, China[J]. Journal of Mountain Science, 2017, 14(9):1689-1700 doi: 10.1007/s11629-017-4609-3
    [5]
    许强, 汤明高, 黄润秋.大型滑坡监测预警与应急处置[M].北京:科学出版社, 2015

    Xu Qiang, Tang Minggao, Huang Runqiu. Monitoring, Early Warning and Emergency Disposal of Large Landslides[M]. Beijing:Science Press, 2015
    [6]
    郭华东.雷达对地观测理论与应用[M].北京:科学出版社, 2000

    Guo Huadong. Theory and Application of Earth Observation by Radar[M]. Beijing:Science Press, 2000
    [7]
    廖明生, 王腾.时间序列InSAR技术与应用[M].北京:科学出版社, 2014

    Liao Mingsheng, Wang Teng. Time Series InSAR Technology and Its Applications[M]. Beijing:Scie-nce Press, 2014
    [8]
    廖明生, 张路, 史绪国, 等.滑坡变形雷达遥感监测方法与实践[M].北京:科学出版社, 2017

    Liao Mingsheng, Zhang Lu, Shi Xuguo, et al. Methodology and Practice of Landslide Deformation Monitoring with SAR Remote Sensing[M]. Beijing:Science Press, 2017
    [9]
    Rosen P A, Hensley S, Joughin I R, et al. Synthetic Aperture Radar Interferometry[J]. Proc of IEEE, 2000, 88(3):333-382 doi: 10.1109/5.838084
    [10]
    Hooper A, Bekaert D, Spaans K, et al. Recent Advances in SAR Interferometry Time Series Analysis for Measuring Crustal Deformation[J].Tectonophysics, 2012, 514:1-13 http://www.sciencedirect.com/science/article/pii/S0040195111004343
    [11]
    Crosetto M, Monserrat O, Cuevas-González M, et al. Persistent Scatterer Interferometry:A Review[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115:78-89 doi: 10.1016/j.isprsjprs.2015.10.011
    [12]
    杨成生, 张勤, 赵超英, 等.短基线集InSAR技术用于大同盆地地面沉降、地裂缝及断裂活动监测[J].武汉大学学报·信息科学版, 2014, 39(8):945-950 http://ch.whu.edu.cn/CN/abstract/abstract3049.shtml

    Yang Chengsheng, Zhang Qin, Zhao Chaoying, et al. Small Baseline Subset InSAR Technology Used in Datong Basin Ground Subsidence, Fissure and Fault Zone Monitoring[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8):945-950 http://ch.whu.edu.cn/CN/abstract/abstract3049.shtml
    [13]
    李鹏, 李振洪, 李陶, 等.宽幅InSAR大地测量学与大尺度形变监测方法[J].武汉大学学报·信息科学版, 2017, 42(9):1195-1202 http://ch.whu.edu.cn/CN/abstract/abstract5817.shtml

    Li Peng, Li Zhenhong, Li Tao, et al. Wide-Swath InSAR Geodesy and Its Applications to Large-Scale Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9):1195-1202 http://ch.whu.edu.cn/CN/abstract/abstract5817.shtml
    [14]
    Zhang Y, Meng X, Chen G, et al. Detection of Geohazards in the Bailong River Basin Using Synthetic Aperture Radar Interferometry[J].Landslides, 2016, 13(5):1273-1284 doi: 10.1007/s10346-015-0660-8
    [15]
    Shi X, Liao M, Li M, et al. Wide-Area Landslide Deformation Mapping with Multi-path ALOS PALSAR Data Stacks:A Case Study of Three Gorges Area, China[J]. Remote Sensing, 2016, 8(2):136 doi: 10.3390/rs8020136
    [16]
    Hanssen R F. Radar Interferometry, Data Interpretation and Error Analysis[M]. Netherlands:Springer, 2001
    [17]
    Ferretti A, Prati C, Rocca F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212 doi: 10.1109/36.868878
    [18]
    Ferretti A, Prati C, Rocca F. Permanent Scatterers in SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20 doi: 10.1109/36.898661
    [19]
    Berardino P, Fornaro G, Lanari R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383 doi: 10.1109/TGRS.2002.803792
    [20]
    Mora O, Mallorqui J J, Broquetas A. Linear and Nonlinear Terrain Deformation Maps from a Reduced Set of Interferometric SAR Images[J].IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10):2243-2253 doi: 10.1109/TGRS.2003.814657
    [21]
    Lanari R, Mora O, Manunta M, et al. A Small-Baseline Approach for Investigating Deformations on Full-Resolution Differential SAR Interferograms[J].IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7):1377-1386 doi: 10.1109/TGRS.2004.828196
    [22]
    Hooper A. A Multi-temporal InSAR Method Incorporating Both Persistent Scatterer and Small Baseline Approaches[J].Geophysical Research Letter, 2008, 35:L16302 doi: 10.1029/2008GL034654
    [23]
    Ferretti A, Fumagalli A, Novali F, et al. A New Algorithm for Processing Interferometric Data-Stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470 doi: 10.1109/TGRS.2011.2124465
    [24]
    Wang Y, Zhu X, Bamler R. Retrieval of Phase History Parameters from Distributed Scatterers in Urban Areas Using very High Resolution SAR Data[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73(9):89-99 http://www.sciencedirect.com/science/article/pii/S0924271612001219
    [25]
    Goel K, Adam N. A Distributed Scatterer Interfero-metry Approach for Precision Monitoring of Known Surface Deformation Phenomena[J].IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9):5454-5468 doi: 10.1109/TGRS.2013.2289370
    [26]
    Lv X, Yazici B, Zeghal M, et al. Joint-Scatterer Processing for Time-Series InSAR[J].IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11):7205-7221 doi: 10.1109/TGRS.2014.2309346
    [27]
    Ng A H M, Ge L, Li X. Assessments of Land Subsidence in the Gippsland Basin of Australia Using ALOS PALSAR Data[J]. Remote Sensing of Environment, 2015, 159:86-101 doi: 10.1016/j.rse.2014.12.003
    [28]
    Fornaro G, Verde S, Reale D, et al. CAESAR:An Approach Based on Covariance Matrix Decomposition to Improve Multibaseline-Multitemporal Interferometric SAR Processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4):2050-2065 doi: 10.1109/TGRS.2014.2352853
    [29]
    Cao N, Lee H, Jung H C. A Phase-Decomposition-Based PSInSAR Processing Method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2):1074-1090 doi: 10.1109/TGRS.2015.2473818
    [30]
    Dong J, Zhang L, Tang M, et al. Mapping Landslide Surface Displacements with Time Series SAR Interferometry by Combining Persistent and Distri-buted Scatterers:A Case Study of Jiaju Landslide in Danba, China[J]. Remote Sensing of Environment 2018, 205:180-198 doi: 10.1016/j.rse.2017.11.022
    [31]
    李明辉, 郑万模, 陈启国.丹巴县地质灾害发育特征及成因探讨[J].自然灾害学报, 2008, 17(1):49-53 doi: 10.3969/j.issn.1004-4574.2008.01.009

    Li Minghui, Zheng Wanmo, Chen Qiguo. Development Characteristic of Geological Hazard in Danba County and Its Cause Discussion[J].Journal of Natural Disasters, 2008, 17(1):49-53 doi: 10.3969/j.issn.1004-4574.2008.01.009
    [32]
    Fujisada H, Bailey G B, Kelly G G, et al. ASTER DEM Performance[J].IEEE Transactions on Geoscie-nce and Remote Sensing, 2005, 43(12):2707-2714 doi: 10.1109/TGRS.2005.847924
    [33]
    敖萌, 张勤, 赵超英, 等.改进的CR-InSAR技术用于四川甲居滑坡形变监测[J].武汉大学学报·信息科学版, 2017, 42(3):377-383 http://ch.whu.edu.cn/CN/abstract/abstract5689.shtml

    Ao Meng, Zhang Qin, Zhao Chaoying, et al. An Improved CR-InSAR Technology Used for Deforma-tion Monitoring in Jiaju Landslide, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3):377-383 http://ch.whu.edu.cn/CN/abstract/abstract5689.shtml
    [34]
    Colesanti C, Wasowski J. Investigating Landslides with Space-Borne Synthetic Aperture Radar (SAR) Interferometry[J]. Engineering Geology, 2006, 88(3):173-199 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=76e04e80aa3b1d5c4a0e9e7422064125
    [35]
    Yin Y, Zheng W, Liu Y, et al. Integration of GPS with InSAR to Monitoring of the Jiaju Landslide in Sichuan, China[J]. Landslides, 2010, 7(3):359-365 doi: 10.1007/s10346-010-0225-9
    [36]
    Hu J, Li Z W, Ding X L, et al. Resolving Three-Dimensional Surface Displacements from InSAR Measurements:A Review[J]. Earth-Science Reviews, 2014, 133:1-17 doi: 10.1016/j.earscirev.2014.02.005
    [37]
    Shi X, Zhang L, Zhou C, et al. Retrieval of Time Series Three-Dimensional Landslide Surface Displacements from Multi-angular SAR Observations[J]. Landslides, 2018, 15(5):1015-1027 doi: 10.1007/s10346-018-0975-3
    [38]
    Wasowski J, Bovenga F. Investigating Landslides and Unstable Slopes with Satellite Multi Temporal Interfero-metry:Current Issues and Future Perspectives[J]. Engineering Geology, 2014, 174:103-138 doi: 10.1016/j.enggeo.2014.03.003
    [39]
    Shi X, Zhang L, Balz T, et al. Landslide Deformation Monitoring Using Point-Like Target Offset Tracking with Multi-mode High-Resolution TerraSAR-X Data[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105:128-140 doi: 10.1016/j.isprsjprs.2015.03.017
    [40]
    Shi X, Jiang H, Zhang L, et al. Landslide Displacement Monitoring with Split-Bandwidth Interferometry:A Case Study of the Shuping Landslide in the Three Gorges Area[J].Remote Sensing, 2017, 9(9):937 doi: 10.3390/rs9090937
    [41]
    Bekaert D P S, Walters R J, Wright T J, et al. Statistical Comparison of InSAR Tropospheric Correction Techniques[J]. Remote Sensing of Environment, 2015, 170:40-47 doi: 10.1016/j.rse.2015.08.035
  • Related Articles

    [1]YANG Jiuyuan, WEN Yangmao, XU Caijun. Seismogenic Fault Structure of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 313-321. DOI: 10.13203/j.whugis20230501
    [2]LIU Bin, ZHANG Li, GE Daqing, LI Man, ZHOU Xiaolong, GUO Zhaocheng, SHI Pengqing, ZHANG Ling, JIN Dingjian, WAN Xiangxing, WANG Yu, WANG Yan. Application of InSAR Monitoring Large Deformation of Landslides Using Lutan-1 Constellation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1753-1762. DOI: 10.13203/j.whugis20230478
    [3]YANG Jiuyuan, WEN Yangmao, XU Caijun. Coseismic Rupture Behavior of the 2024 Nima (Tibet) MW 6.0 Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240243
    [4]MAO Hongfei, XIE Lei, JIANG Kun, SUN Kai, WANG Jiageng, XU Wenbin. Source Parameter Inversion of Moderate to Strong Earthquakes and Its Comparison with Earthquake Catalogs in Tibetan Plateau based on InSAR Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240124
    [5]XU Qiang, LU Huiyan, LI Weile, DONG Xiujun, GUO Chen. Types of Potential Landslide and Corresponding Identification Technologies[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 377-387. DOI: 10.13203/j.whugis20210618
    [6]LIU Bin, GE Daqing, WANG Shanshan, LI Man, ZHANG Ling, WANG Yan, WU Qiong. Combining Application of TOPS and ScanSAR InSAR in Large-Scale Geohazards Identification[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1756-1762. DOI: 10.13203/j.whugis20200259
    [7]LIU Yang, XU Caijun, WEN Yangmao. InSAR Observation of Menyuan Mw5.9 Earthquake Deformation and Deep Geometry of Regional Fault Zone[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1035-1042. DOI: 10.13203/j.whugis20190069
    [8]CAO Haikun, ZHAO Lihua, ZHANG Qin, QU Wei, NIE Jianliang. Ascending and Descending Orbits InSAR-GPS Data Fusion Method with Additional Systematic Parameters for Three-Dimensional Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1362-1368. DOI: 10.13203/j.whugis20160461
    [9]Yue Xijuan, Han Chunming, Dou Changyong, Zhao Yinghui. Mathematical Model of Airborne InSAR Block Adjustment[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 59-63.
    [10]WU Yunsun, LI Zhenhong, LIU Jingnan, XU Caijun. Atmospheric Correction Models for InSAR Measurements[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 862-867.

Catalog

    Article views (4115) PDF downloads (923) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return