YANG Hui, HU Wusheng, YU Longfei, NIE Xichen, LI Hang. GHop: A New Regional Tropospheric Zenith Delay Model[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 226-232. DOI: 10.13203/j.whugis20180167
Citation: YANG Hui, HU Wusheng, YU Longfei, NIE Xichen, LI Hang. GHop: A New Regional Tropospheric Zenith Delay Model[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 226-232. DOI: 10.13203/j.whugis20180167

GHop: A New Regional Tropospheric Zenith Delay Model

Funds: 

The National Natural Science Foundation of China 41574022

More Information
  • Author Bio:

    YANG Hui, master, specializes in the theories and methods of GNSS satellite navigation and positioning.E-mail:1204573293@qq.com

  • Corresponding author:

    HU Wusheng, PhD, professor. E-mail:13705151633@163.com

  • Received Date: August 01, 2019
  • Published Date: February 04, 2020
  • To solve the problems of low accuracy and poor stability in the traditional estimation of zenith delay, a method of adding annual and semi-annual periodic terms on the basis of Hopfield model is proposed. Based on the atmospheric data of the global geodetic observation system at 45 stations from 2012 to 2014 in China, the time series and spectrum distribution of zenith tropospheric delay (ZTD) and residual Hopfield model are analyzed. With the introduction of annual and semi-annual cycle term, the GHop model suitable for China region is established, and the accuracy and adaptation of the two models are evaluated. The results show that the deviation and middle error of Hopfield model represent obvious seasonal variation in time, while GHop model is small and stable. In terms of spatial distribution, the Hopfield model varies greatly with the increase of elevation and latitude, GHop model can adapt to different latitudes and elevation ranges. Annual deviation of coincidence accuracy in GHop is 28% higher than that of Hopfield, and 76 radiosensory data in China are used for external coincidence test. The statistical results are better than those of Hopfield model. The ZTD results calculated by the proposed method are more reliable and have high practical value.
  • [1]
    唐卫明, 刘前, 高柯夫, 等.北斗伪距码偏差对基线解算的影响分析[J].武汉大学学报·信息科学版, 2018, 43(8):1 199-1 206 http://ch.whu.edu.cn/CN/abstract/abstract6174.shtml

    Tang Weiming, Liu Qian, Gao Kefu, et al. Influence of BDS Pseudorange Code Biases on Baseline Resolution[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8):1 199-1 206 http://ch.whu.edu.cn/CN/abstract/abstract6174.shtml
    [2]
    赵静旸, 宋淑丽, 陈钦明, 等.基于垂直剖面函数式的全球对流层天顶延迟模型的建立[J].地球物理学报, 2014, 57(10):3 140-3 153

    Zhao Jingyang, Song Shuli, Chen Qinming, et al. The Establishment of Global Tropospheric Zenith Delay Model Based on the Function of Vertical Section[J]. Chinese Journal of Geophysics, 2014, 57(10): 3 140-3 153
    [3]
    Li W, Yuan Y, Ou J, et al. New Versions of the BDS/GNSS Zenith Tropospheric Delay Model IGGtrop[J]. Journal of Geodesy, 2015, 89(1):73-80 doi: 10.1007/s00190-014-0761-5
    [4]
    Lomb N R. Least-Squares Frequency Analysis of Unequally Spaced Data[J]. Astrophysics & Space Science, 1976, 39(2):447-462 doi: 10.1007-BF00648343/
    [5]
    Lagler K, Schindelegger M, Böhm J, et al. GPT2: Empirical Slant Delay Model for Radio Space Geodetic Techniques[J]. Geophysical Research Letters, 2013, 40(6):1 069-1 073 doi: 10.1002/grl.50288
    [6]
    Davis J L, Herring T A, Shapiro I I, et al. Geodesy by Radio Interferometry: Effects of Atmospheric Modeling Errors on Estimates of Baseline Length[J]. Radio Science, 2016, 20(6):1 593-1 607 doi: 10.1029-RS020i006p01593/
    [7]
    Leandro R F, Langley R B, Santos M C. UNB3m_pack: A Neutral Atmosphere Delay Package for Radiometric Space Techniques[J]. GPS Solutions, 2008, 12(1):65-70 doi: 10.1007/s10291-007-0077-5
    [8]
    吴文溢, 陈西宏, 孙际哲, 等.改进的对流层天顶延迟估计方法[J].探测与控制学报, 2016, 38(5):96-100 http://d.old.wanfangdata.com.cn/Periodical/tcykzxb201605020

    Wu Wenyi, Chen Xihong, Sun Jizhe, et al. Improved Tropospheric Zenith Delay Estimation Method[J]. Journal of Detection and Control, 2016, 38(5):96-100 http://d.old.wanfangdata.com.cn/Periodical/tcykzxb201605020
    [9]
    张晶晶, 程鹏飞, 蔡艳辉.高精度对流层天顶湿延迟模型研究[J].测绘科学, 2014, 39(10):33-36 http://d.old.wanfangdata.com.cn/Periodical/chkx201410008

    Zhang Jingjing, Cheng Pengfei, Cai Yanhui. Study on the High Precision Tropospheric Zenith Wet Delay Model[J]. Surveying Science, 2014, 39(10):33-36 http://d.old.wanfangdata.com.cn/Periodical/chkx201410008
    [10]
    毛健, 朱长青, 郭继发.一种新的全球对流层天顶延迟模型[J].武汉大学学报·信息科学版, 2013, 38(6):684-688 http://ch.whu.edu.cn/CN/abstract/abstract2667.shtml

    Mao Jian, Zhu Changqing, Guo Jifa. A New Global Tropospheric Zenith Delay Model[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6):684-688 http://ch.whu.edu.cn/CN/abstract/abstract2667.shtml
    [11]
    Myers T A, Maibach E W, Roser C. The Relationship Between Personal Experience and Belief in the Reality of Global Warming[J]. Nature Climate Change, 2013, 3(4):343-347 doi: 10.1038/nclimate1754
    [12]
    姚宜斌, 何畅勇, 张豹, 等.一种新的全球对流层天顶延迟模型GZTD[J].地球物理学报, 2013, 56(7):2 218-2 227 http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201307009

    Yao Yibin, He Changyong, Zhang Bao, et al. A New Global Zenith Tropospheric Delay Model GZTD[J]. Chinese Journal of Geophysics, 2013, 56(7):2 218-2 227 http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201307009
    [13]
    王君刚, 陈俊平, 王解先, 等.对流层经验改正模型在中国区域的精度评估[J].武汉大学学报·信息科学版, 2016, 41(12):1 656-1 663 http://ch.whu.edu.cn/CN/abstract/abstract5619.shtml

    Wang Jungang, Chen Junping, Wang Jiexian, et al. Accuracy Assessment of Tropospheric Empirical Correction Model in China[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12):1 656-1 663 http://ch.whu.edu.cn/CN/abstract/abstract5619.shtml
    [14]
    朱明晨, 胡伍生, 王来顺. GPT2w模型在中国区域的精度检验与分析[J].武汉大学学报·信息科学版, 2019, 44(9): 1 304-1 311 http://ch.whu.edu.cn/CN/abstract/abstract6502.shtml

    Zhu Mingchen, Hu Wusheng, Wang Laishun. Accuracy Test and Analysis for GPT2w Model in China[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1 304-1 311 http://ch.whu.edu.cn/CN/abstract/abstract6502.shtml
    [15]
    赵静旸, 时爽爽.对流层天顶延迟模型研究进展及其在中国区域的精度分析[J].地球物理学进展, 2018, 33(1):148-155 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201801019

    Zhao Jingyang, Shi Shuangshuang. Research Progress of Zenith Tropospheric Delay Model and Its Accuracy Analysis over China[J]. Progress in Geophysics, 2018, 33(1):148-155 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201801019
    [16]
    姚宜斌, 张豹, 严凤, 等.两种精化的对流层延迟改正模型[J].地球物理学报, 2015, 58(5):1 492-1 501 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201505003

    Yao Yibin, Zhang Bao, Yan Feng, et al. Two New Sophisticated Models for Tropospheric Delay Corrections[J]. Chinese Journal of Geophysics, 2015, 58(5): 1 492-1 501 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201505003
    [17]
    李薇, 袁运斌, 欧吉坤, 等.全球对流层天顶延迟模型IGGtrop的建立与分析[J].科学通报, 2012, 57(15):1 317-1 325 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201215005

    Li Wei, Yuan Yunbin, Ou Jikun, et al. A New Global Zenith Tropospheric Delay Model IGGtrop for GNSS Applications[J]. Chinese Science Bulletin, 2012, 57(15): 1 317-1 325 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201215005
  • Related Articles

    [1]Chen Xinyang, Long Xiaoxiang, Li Qingpeng, Li Jingmei, Han Qijin, Xu Zhaopeng, Yao Weiyuan. Data Proccing and Accuracy Verification for Laser Altimeter of Terrestrial Ecosystem Carbon Inventory Satellite[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230110
    [2]ZHOU Ping, TANG Xinming, WANG Xia, LIU Changru, WANG Zhenming. Geometric Accuracy Evaluation Model of Domestic Push-Broom Mapping Satellite Image[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1628-1634. DOI: 10.13203/j.whugis20160486
    [3]YAN Wei, LIU Jianjun, REN Xin, WANG Fenfei. Accuracy Analysis of CE-3 Moon-Based Ultraviolet Telescope Geometric Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 133-137, 166. DOI: 10.13203/j.whugis20150162
    [4]MENG Weican, ZHU Shulong, CAO Wen, CAO Bincai, GAO Xiang. High Accuracy On-Orbit Geometric Calibration of Linear Push-broom Cameras[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1392-1399,1413. DOI: 10.13203/j.whugis20140534
    [5]YIN Chuan, WANG Yanhui. Target Geometry Matching Threshold in Incremental Updatingof Road Networks Based on OSTU[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1061-1067. DOI: 10.13203/j.whugis20130575
    [6]YAN Li, JIANG Yun, WANG Jun. Building of Rigorous Geometric Processing Model Based onLine-of-Sight Vector of ZY-3 Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1451-1455.
    [7]LIU Liangming, YE Yuanxin, FAN Dengke, XU Qi. Study on Geometric Rectification for FY-2 S-VISSR Data[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4): 384-388.
    [8]WU Fang, ZHU Kunpeng. Geometric Accuracy Assessment of Linear Features' Simplification Algorithms[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 600-603.
    [9]Li Deren, Wang Xinhua. Geometric Calibration of CCD Array Camera[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 308-313,317.
    [10]Fan Yonghong. Geometric Rectification of SAR Image[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 39-41.
  • Cited by

    Periodical cited type(32)

    1. 王蕾,何鑫,廖成. 基于知识库相似检索的自然资源调查监测图斑辅助辨识方法. 测绘通报. 2025(02): 137-142 .
    2. 张秀锦,张秀民. 基于轻便的node.js地图识别模型实现分析. 山东交通科技. 2024(02): 130-132 .
    3. 汤冻,奚晓轶,闫涛. 一种用于电视节目播出异态识别的人工智能模型训练方法. 电视技术. 2023(01): 61-65 .
    4. 梁生珺,于明鑫. 应用于无人机平台的轻量Transformer排水口检测框架. 电子技术与软件工程. 2023(01): 165-168 .
    5. 陶立清,黄国满,杨书成,王童童,盛辉军,范海涛. 一种利用卷积神经网络的干涉图去噪方法. 武汉大学学报(信息科学版). 2023(04): 559-567 .
    6. 桂志鹏,胡晓辉,刘欣婕,凌志鹏,姜屿涵,吴华意. 顾及地理语义的地图检索意图形式化表达与识别. 地球信息科学学报. 2023(06): 1186-1201 .
    7. 李从初,励臣儒,朱佳敏,姚浩立. 基于迁移学习和Xception网络的海雾能见度等级估测研究. 浙江气象. 2023(01): 23-28 .
    8. 田启川,吴施瑶,马英楠. 基于卷积神经网络的光学遥感影像分析综述. 计算机应用与软件. 2023(10): 1-9+45 .
    9. 樊翔宇,张聪,杨柳. 融合梅尔谱和循环残差的小样本音频分类模型. 计算机仿真. 2022(02): 195-202 .
    10. 金海峰,吴楠,张悠然. 智慧家庭中的人体动作识别研究综述. 软件导刊. 2022(04): 240-247 .
    11. 冯新扬,邵超. 跨卷积网络特征融合的SAR图像目标识别. 系统仿真学报. 2021(03): 554-561 .
    12. 任加新,刘万增,李志林,李然,翟曦. 利用卷积神经网络进行“问题地图”智能检测. 武汉大学学报(信息科学版). 2021(04): 570-577 .
    13. 王建华,冉煜琨. 适用于便携式设备的深度神经网络眼动跟踪. 计算机与现代化. 2021(08): 58-63 .
    14. 郑雯,沈琪浩,任佳. 基于Improved DR-Net算法的糖尿病视网膜病变识别与分级. 光学学报. 2021(22): 72-83 .
    15. 任福,侯宛玥. 面向机器阅读的地图名称注记类别识别方法. 武汉大学学报(信息科学版). 2020(02): 273-280 .
    16. 吴晓玲,黄金雪,何文海. 基于深度卷积神经网络的塑料垃圾分类研究. 塑料科技. 2020(04): 86-89 .
    17. 叶宇光. 基于深度残差网络的图像识别技术研究. 韶关学院学报. 2020(06): 18-22 .
    18. 王科举,廉小亲,陈彦铭,安飒,龚永罡. 基于深度学习的机械臂视觉系统. 信息技术与信息化. 2020(08): 203-208 .
    19. 侯东阳,武昊,陈军. 时空数据Web搜索的研究进展. 地理信息世界. 2020(04): 1-12+21 .
    20. 刘彩玲,岳荷荷. 基于(2D)~2-PCANet的种子图像识别. 计算机应用与软件. 2020(10): 232-238 .
    21. 谢万里,李宏志,周辉,尹绍武. 基于迁移学习与卷积神经网络的鱼濒死预警系统研究. 中国农机化学报. 2019(02): 186-192 .
    22. 宋益盛,林志杰. 基于迁移学习和数据增强技术的物种识别. 现代计算机. 2019(14): 57-63 .
    23. 李雄,文开福,钟小明,杨辉,秦德浩. 基于深度学习的人脸识别考勤管理系统开发. 实验室研究与探索. 2019(07): 115-118+123 .
    24. 李静,韩震,王文柳,崔艳荣. 基于OverFeat模型的长江口南汇潮滩植被分类. 生态科学. 2019(04): 135-141 .
    25. 江涛,王新杰. 基于卷积神经网络的高分二号影像林分类型分类. 北京林业大学学报. 2019(09): 20-29 .
    26. 呙鹏程,吴礼洋. 融合卷积特征与判别字典学习的低截获概率雷达信号识别. 兵工学报. 2019(09): 1881-1889 .
    27. 刘洋,冯全,王书志. 基于轻量级CNN的植物病害识别方法及移动端应用. 农业工程学报. 2019(17): 194-204 .
    28. 门计林,刘越岩,张斌,周繁. 多结构卷积神经网络特征级联的高分影像土地利用分类. 武汉大学学报(信息科学版). 2019(12): 1841-1848 .
    29. 赵波,廖坤,邓春宇,谈元鹏,曹生现. 基于卷积神经学习的光伏板积灰状态识别与分析. 中国电机工程学报. 2019(23): 6981-6989+7111 .
    30. 尹宗天,谢超逸,刘苏宜,刘新如. 低分辨率图像的细节还原. 软件. 2018(05): 199-202 .
    31. 宋俊芳. 基于BP神经网络的图像分割. 数字通信世界. 2018(03): 66+170 .
    32. 朱祺夫,赵俊三,陈磊士,李易. 基于深度学习的遥感影像城市建筑用地提取. 软件导刊. 2018(10): 18-21 .

    Other cited types(62)

Catalog

    Article views (1527) PDF downloads (92) Cited by(94)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return