ZHANG Xuebo, DAI Xuntao, FANG Biao. A Range-Doppler Imaging Method for the Multireceiver Synthetic Aperture Sonar[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1667-1673. DOI: 10.13203/j.whugis20180076
Citation: ZHANG Xuebo, DAI Xuntao, FANG Biao. A Range-Doppler Imaging Method for the Multireceiver Synthetic Aperture Sonar[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1667-1673. DOI: 10.13203/j.whugis20180076

A Range-Doppler Imaging Method for the Multireceiver Synthetic Aperture Sonar

Funds: 

Natural Science Foundation of China 61601473

the Advanced Research Foundation of Equipment 9140C290401150C29132

More Information
  • Author Bio:

    ZHANG Xuebo, PhD, engineer, specializes in signal processing of underwater acoustics. E-mail:xuebo_zhang@sina.cn

  • Received Date: June 11, 2018
  • Published Date: November 04, 2019
  • With Loffeld's bistatic formula (LBF), the transfer function of the multireceiver synthetic aperture sonar (SAS) can be decomposed into the quasi-monostatic term and bistatic deformation term. For this model, the phase error in the 2D frequency domain is quantitatively analyzed. The results indicate that this model can fully satisfy the imaging need with high performance. Based on that, a new imaging method is proposed. Firstly, the range variant term of bistatic deformation phase should be first compensated in the 2D frequency domain via the range-dependent sub-block processing. Subsequently, the monostatic SAS equivalent data can be obtained by rearranging the multireceiver data in order in the 2D time domain. Then, a range-Doppler (R-D) algorithm is exploited to process the monostatic SAS equivalent data. Finally, the processing results of simulated and real data validate the proposed method.
  • [1]
    Li N, Wang R, Deng Y, et al. Autofocus Correction of Residual RCM for VHR SAR Sensors with Light-Small Aircraft[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 441-452 doi: 10.1109/TGRS.2016.2608423
    [2]
    刘利敏, 余洁, 李小娟, 等.引入商空间粒度计算的全极化SAR影像分类[J].武汉大学学报·信息科学版, 2018, 43(1): 74-80 http://ch.whu.edu.cn/CN/abstract/abstract5949.shtml

    Liu Limin, Yu Jie, Li Xiaojuan, et al. An Improved Full Polarimetric SAR Image Classification Method Combing with Granularity Computing of Quotient Space Theory[J].Geomatics and Information Science of Wuhan University, 2018, 43(1): 74-80 http://ch.whu.edu.cn/CN/abstract/abstract5949.shtml
    [3]
    Wang R, Wang W, Shao Y, et al. First Bistatic Demonstration of Digital Beamforming in Elevation with TerraSAR-X as an Illuminator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 842-849 doi: 10.1109/TGRS.2015.2467176
    [4]
    杨梦诗, 廖明生, 秦晓琼, 等. C和L波段SAR数据在填海新区的应用及特性分析[J].武汉大学学报·信息科学版, 2017, 42(9): 1 300-1 305 http://ch.whu.edu.cn/CN/abstract/abstract5832.shtml

    Yang Mengshi, Liao Mingsheng, Qin Xiaoqiong, et al. Analysis of Capabilities of C- and L-band SAR Data to Detect Newly-Reclaimed Area[J].Geomatics and Information Science of Wuhan University, 2017, 42(9): 1 300-1 305 http://ch.whu.edu.cn/CN/abstract/abstract5832.shtml
    [5]
    Synnes S A, Hunter A J, Hansen R E, et al. WideBand Synthetic Aperture Sonar Backprojection with Maximization of Wave Number Domain Support[J]. IEEE Journal of Oceanic Engineering, 2017, 42(4): 880-891 doi: 10.1109/JOE.2016.2614717
    [6]
    许炎义, 钟何平, 唐劲松.多接收阵合成孔径声纳后向投影成像快速算法[J].武汉大学学报·信息科学版, 2015, 40(10): 1 409-1 413 http://ch.whu.edu.cn/CN/abstract/abstract3356.shtml

    Xu Yanyi, Zhong Heping, Tang Jinsong. A Fast Back-Projection Algorithm for Multi-receiver Synthetic Aperture Sonar[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1 409-1 413 http://ch.whu.edu.cn/CN/abstract/abstract3356.shtml
    [7]
    Zhang X, Huang H, Ying W, et al. An Indirect Range-Doppler Algorithm for Multireceiver Synthetic Aperture Sonar Based on Lagrange Inversion Theorem[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3 572-3 587 doi: 10.1109/TGRS.2017.2676339
    [8]
    白生祥, 郑春弟, 张森.利用加权联合协方差矩阵拟合进行干涉相位估计[J].武汉大学学报·信息科学版, 2016, 41(4): 475-481 http://ch.whu.edu.cn/CN/abstract/abstract5417.shtml

    Bai Shengxiang, Zheng Chundi, Zhang Sen. Interferometric Phase Estimation Based on Weighted Joint Covariance Matrix Fitting[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 475-481 http://ch.whu.edu.cn/CN/abstract/abstract5417.shtml
    [9]
    Hunter A J, Dugelay S, Fox W L J. Repeat-pass Synthetic Aperture Sonar Micronavigation Using Redundant Phase Center Arrays[J]. IEEE Journal of Oceanic Engineering, 2016, 41(4): 820-830 doi: 10.1109/JOE.2016.2524498
    [10]
    Michael A S, Dalvir K S, Jared S. Commercial Vehicle Classification Form Spectrum Parted Linked Image Test-Attributed Synthetic Aperture Radar Imagery[J]. IET Radar Sonar & Navigation, 2016, 10(3): 569-576 https://www.researchgate.net/publication/282583701_Commercial_vehicle_classification_from_spectrum_parted_linked_image_test-attributed_synthetic_aperture_radar_imagery
    [11]
    张学波, 唐劲松, 钟何平, 等.适用于宽波束的多接收阵SAS波数域成像算法[J].哈尔滨工程大学学报, 2014, 35(1): 93-101 http://www.cnki.com.cn/Article/CJFDTotal-HEBG201401016.htm

    Zhang Xuebo, Tang Jinsong, Zhong Heping, et al. Wavenumber-Domain Imaging Algorithm for Wide-Beam Multi-receiver Synthetic Aperture Sonar[J]. Journal of Harbin Engineering University, 2014, 35(1): 93-101 http://www.cnki.com.cn/Article/CJFDTotal-HEBG201401016.htm
    [12]
    Zhang X, Tang J, Zhong H. Multireceiver Correction for the Chirp Scaling Algorithm in Synthetic Aperture Sonar[J]. IEEE Journal of Oceanic Engineering, 2014, 39(3): 472-481 doi: 10.1109/JOE.2013.2251809
    [13]
    Gough P T, Hayes M P. Fast Fourier Techniques for SAS Imagery[C].IEEE Oceans Conference, Brest, France, 2005
    [14]
    Wang R, Deng Y, Loffeld O, et al. Processing the Azimuth-Variant Bistatic SAR Data by Using Monostatic Imaging Algorithms Based on Two-Dimensional Principle of Stationary Phase[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3 504-3 520 doi: 10.1109/TGRS.2011.2129573
    [15]
    张学波, 唐劲松, 钟何平.合成孔径声纳多接收阵数据融合CS成像算法[J].哈尔滨工程大学学报, 2013, 34(2): 240-244

    Zhang Xuebo, Tang Jinsong, Zhong Heping. Chirp Scaling Imaging Algorithm for Synthetic Aperture Sonar Based on Data Fusion of Multi-receiver Array[J]. Journal of Harbin Engineering University, 2013, 34(2): 240-244
    [16]
    Wang X, Zhang X, Zhu S. Upsampling Based Back Projection Imaging Algorithm for Multi-receiver Synthetic Aperture Sonar[C]. 2015 International Industrial Informatics and Computer Engineering Conference (ⅢCEC), Xi'an, China, 2015
  • Related Articles

    [1]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [2]GENG Jianghui, YAN Zhe, WEN Qiang. Multi-GNSS Satellite Clock and Bias Product Combination: The Third IGS Reprocessing Campaign[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1070-1081. DOI: 10.13203/j.whugis20230071
    [3]LIU Mingliang, AN Jiachun, WANG Zemin, ZHANG Baojun, SONG Xiangyu. Performance Analysis of BDS-3 Multi-frequency Pseudorange Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 902-910. DOI: 10.13203/j.whugis20200714
    [4]YUAN Haijun, ZHANG Zhetao, HE Xiufeng, XU Tianyang, XU Xueyong. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. DOI: 10.13203/j.whugis20200517
    [5]ZHOU Ren-yu, HU Zhi-gang, CAI Hong-liang, ZHAO Zhen, RAO Yong-nan, CHEN Liang, ZHAO Qi-le. Analysis of Pseudorange and Carrier Ranging Deviation of BDS-3 Using Parabolic Directional Antenna[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1298-1308. DOI: 10.13203/j.whugis20200182
    [6]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [7]ZOU Xuan, LI Zongnan, CHEN Liang, LI Min, TANG Weiming, SHI Chuang. Modeling BeiDou IGSO and MEO Satellites Code Pseudorange Variations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1661-1666. DOI: 10.13203/j.whugis20160275
    [8]LI Xin, ZHANG Xiaohong, ZENG Qi, PAN Lin, ZHU Feng. The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062
    [9]LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107
    [10]FAN Lei, ZHONG Shiming, LI Zishen, OU Jikun. Effect of Tracking Stations Distribution on the Estimation of Differential Code Biases by GPS Satellites Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 316-321. DOI: 10.13203/j.whugis20140114

Catalog

    Article views (1368) PDF downloads (120) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return