CUI Jiawu, ZHANG Xingfu, ZHOU Boyang, DU Xiangfeng, WEI Dehong. Improved step-by-step elimination method for optimal selection of GNSS/leveling points[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1505-1510. DOI: 10.13203/j.whugis20180074
Citation: CUI Jiawu, ZHANG Xingfu, ZHOU Boyang, DU Xiangfeng, WEI Dehong. Improved step-by-step elimination method for optimal selection of GNSS/leveling points[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1505-1510. DOI: 10.13203/j.whugis20180074

Improved step-by-step elimination method for optimal selection of GNSS/leveling points

Funds: 

The National Natural Science Foundation of China 41674006

The National Natural Science Foundation of China 41504013

More Information
  • Author Bio:

    CUI Jiawu, postgraduate, specializes in mearsurement data processing. E-mail: 864885814@qq.com

  • Corresponding author:

    ZHANG Xingfu, PhD, associate professor. E-mail: xfzhang77@163.com

  • Received Date: August 28, 2018
  • Published Date: October 04, 2019
  • The reasonable selection of GNSS/leveling points is very important to GNSS height fitting, step-by-step elimination method is a good method for the optimization selection of joint-observation points. The traditional elimination method selects the GNSS/leveling points based on the minimum fitting error of height anomaly, which will easily lead to uneven joint-observation points. According to this view, this paper proposes to optimize the joint-observation point based on the area size of Thiessen polygons generated by the GNSS/leveling points, and on this basis to improve the traditional method, namely taking into account both the size of the height anomaly fitting error and the area size of polygons generated by Thiessen method (referred to as the synthesis method). The experimental results show that the synthesis method can improve the distribution of joint-observation points, and get the fitting results of height anomaly with high stability and accuracy.
  • [1]
    王乐洋, 吴飞, 吴良才. GPS高程转换的总体最小二乘拟合推估模型[J].武汉大学学报·信息科学版, 2016, 41(9):1259-1264 http://ch.whu.edu.cn/CN/abstract/abstract5537.shtml

    Wang Leyang, Wu Fei, Wu Liangcai. Total Least Squares Fitting Estimation Model for GPS Height Transformation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9):1259-1264 http://ch.whu.edu.cn/CN/abstract/abstract5537.shtml
    [2]
    陈为民, 张旭东, 符华年, 等. GPS高程测量代替等级水准测量的应用研究[J].武汉大学学报·信息科学版, 2013, 38(7):828-831 http://ch.whu.edu.cn/CN/abstract/abstract2695.shtml

    Chen Weimin, Zhang Xudong, Fu Huanian, et al. Application Research of GPS Elevation Survey Instead of Grade Leveling[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7):828-831 http://ch.whu.edu.cn/CN/abstract/abstract2695.shtml
    [3]
    张正禄, 邓勇, 罗长林, 等.利用GPS精化区域似大地水准面[J].大地测量与地球动力学, 2006, 26(4):14-17 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200604004

    Zhang Zhenglu, Deng Yong, Luo Changlin, et al. Refining Local Quasigeoid with GPS[J]. Journal of Geodesy and Geodynamics, 2006, 26(4):14-17 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200604004
    [4]
    刘大杰, 姚连璧, 周全基. GPS水准的拟合基准面高程系统[J].测绘学报, 2000, 29(S1):11-15 http://d.old.wanfangdata.com.cn/Periodical/chxb2000z1002

    Liu Dajie, Yao Lianbi, Zhou Quanji. Fit Height Basis for GPS Leveling[J]. Acta Geodaetica et Cartographica Sinica, 2000, 29(S1):11-15 http://d.old.wanfangdata.com.cn/Periodical/chxb2000z1002
    [5]
    高伟, 徐绍铨. GPS高程分区拟合转换正常高的研究[J].武汉大学学报·信息科学版, 2004, 29(10):908-911 http://ch.whu.edu.cn/CN/abstract/abstract4529.shtml

    Gao Wei, Xu Shaoquan. Subregional Fitting and Transforming GPS Height into Normal Height[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10):908-911 http://ch.whu.edu.cn/CN/abstract/abstract4529.shtml
    [6]
    Kavzoglu T, Saka M H. Modelling local GPS/Leve-lling Geoid Undulations Using Artificial Neural Networks[J]. Journal of Geodesy, 2005, 78(9):520-527 doi: 10.1007/s00190-004-0420-3
    [7]
    Shrestha R, Nazir A, Dewitt B, et al. Surface Interpolation Techniques to Convert GPS Ellipsoid Heights to Elevations[J]. Surveying and Land Information Systems, 1993, 53(2):133-144
    [8]
    吴兆福, 宫鹏, 高飞, 等.基于支持向量机的GPS似大地水准面拟合[J].测绘学报, 2004, 33(4):303-306 doi: 10.3321/j.issn:1001-1595.2004.04.005

    Wu Zhaofu, Gong Peng, Gao Fei, et al. GPS Quasi Geoid Fitting Based on Support Vector Machine Technology[J]. Acta Geodaetica et Cartographica Sinica, 2004, 33(4):303-306 doi: 10.3321/j.issn:1001-1595.2004.04.005
    [9]
    Zhong D. Robust Estimation and Optimal Selection of Polynomial Parameters for the Interpolation of GPS Geoid Heights[J]. Journal of Geodesy, 1997, 71(9):552-561 doi: 10.1007/s001900050123
    [10]
    沈云中, 高达凯, 张兴福. GPS水准点优化选择法[J].工程勘察, 2004, 191(6):49-51 http://d.old.wanfangdata.com.cn/Conference/5106361

    Shen Yunzhong, Gao Dakai, Zhang Xingfu. GPS Leveling Optimization Method[J]. Geotechnical Investigation & Surveying, 2004, 191(6):49-51 http://d.old.wanfangdata.com.cn/Conference/5106361
    [11]
    管真, 陈剑杰, 尉伯虎.控制点数量与分布对GPS水准二次曲面拟合精度的影响[J].测绘与空间地理信息, 2012, 35(2):126-128 doi: 10.3969/j.issn.1672-5867.2012.02.038

    Guan Zhen, Chen Jianjie, Wei Bohu. Influence of Number and Distribution of Control Points on the GPS Leveling Fitting Accuracy by Conicoid Fitting Method[J]. Geomatics & Spatial Informatlon Technology, 2012, 35(2):126-128 doi: 10.3969/j.issn.1672-5867.2012.02.038
    [12]
    姚吉利, 曲国庆, 刘科利, 等.拟合点分布与GPS水准面拟合精度关系研究[J].大地测量与地球动力学, 2008, 28(5):50-54 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200805010

    Yao Jili, Qu Guoqing, Liu Keli, et al. Research on Accuracy of Quasi-geoid with Fitting Methods Under Different Distribution of GPS Points[J]. Journal of Geodesy and Geodynamics, 2008, 28(5):50-54 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200805010
    [13]
    楼立志.中国及邻区模拟大地水准面的研究[D].武汉: 中国科学院研究生院测量与地球物理研究所, 2004 http://cdmd.cnki.com.cn/article/cdmd-80057-2004097816.htm

    Lou Lizhi. A Study on Simulated Geoid in China and Its Adjacent Regions[D]. Wuhan: Institute of Geodesy and Geophysics, Chinese Academy of Scien-ces, 2004 http://cdmd.cnki.com.cn/article/cdmd-80057-2004097816.htm
    [14]
    Lin L S. Application of a Back-Propagation Artificial Neural Network to Regional Grid-based Geoid Model Generation Using GPS and Leveling Data[J]. Journal of Surveying Engineering, 2007, 133(2):81-89 doi: 10.1061/(ASCE)0733-9453(2007)133:2(81)
    [15]
    杨明清, 靳蕃, 朱达成, 等.用神经网络方法转换GPS高程[J].测绘学报, 1999, 28(4):301-307 doi: 10.3321/j.issn:1001-1595.1999.04.005

    Yang Mingqing, Jin Fan, Zhu Dacheng, et al. Conversion of GPS Height by Artifical Neural Network Method[J]. Acta Geodaetica et Cartographica Sinica, 1999, 28(4):301-307 doi: 10.3321/j.issn:1001-1595.1999.04.005
    [16]
    胡伍生, 华锡生, 张志伟.平坦地区转换GPS高程的混合转换方法[J].测绘学报, 2002, 31(2):128-133 doi: 10.3321/j.issn:1001-1595.2002.02.008

    Hu Wusheng, Hua Xisheng, Zhang Zhiwei. Conversion of GPS Height in Plainness Area by the CF & NNM Method[J]. Acta Geodaetica et Cartographica Sinica, 2002, 31(2):128-133 doi: 10.3321/j.issn:1001-1595.2002.02.008
    [17]
    张小红, 程世来, 许晓东.基于Kriging统计的GPS高程拟合方法研究[J].大地测量与地球动力学, 2007, 27(2):47-51 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200702009

    Zhang Xiaohong, Cheng Shilai, Xu Xiaodong. Research of GPS Elevation Fitting Models Based on Kriging Method[J]. Journal of Geodesy and Geodynamics, 2007, 27(2):47-51 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200702009
    [18]
    王殊伟, 李斐, 柯宝贵, 等.基于BP神经网络算法的GPS水准高程转换[J].武汉大学学报·信息科学版, 2009, 34(10):1190-1193, 1185 http://ch.whu.edu.cn/CN/abstract/abstract1404.shtml

    Wang Shuwei, Li fei, Ke Baogui, et al. Conversion of GPS Height Based on BP ANNs[J]. Geomatics and Information Science of Wuhan University, 2009, 34(10):1190-1193, 1185 http://ch.whu.edu.cn/CN/abstract/abstract1404.shtml
    [19]
    赵建虎, 王真祥, 王胜平, 等.大区域似大地水准面模型的建立方法研究[J].武汉大学学报·信息科学版, 2008, 33(1):68-71 http://ch.whu.edu.cn/CN/abstract/abstract1494.shtml

    Zhao Jianhu, Wang Zhenxiang, Wang Shengping, et al. Determination of a Quasi-geoid in Large Region with Datum of Continuous GPS Networks[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1):68-71 http://ch.whu.edu.cn/CN/abstract/abstract1494.shtml
    [20]
    Thiessen A H. Precipitation Averages for Large Areas[J]. Monthly Weather Review, 1911, 39(7):1082-1089 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_870a02234a48ad79c225c051e3f2e809
    [21]
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. GB 50026-2007工程测量规范[S].北京: 中国计划出版社, 2008

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB 50026-2007 Code for Engineering Surveying[S]. Beijing: China Planning Press, 2008
  • Related Articles

    [1]WU Jiaqi, JIANG Yonghua, SHEN Xin, LI Beibei, PAN Shenlin. Satellite Video Motion Detection Supported by Decision Tree Weak Classification[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1182-1190. DOI: 10.13203/j.whugis20180094
    [2]FU Zisheng, LI Qiuping, LIU Lin, ZHOU Suhong. Identification of Urban Network Congested Segments Using GPS Trajectories Double-Clustering Method[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1264-1270. DOI: 10.13203/j.whugis20150036
    [3]DENG Min, CHEN Ti, YANG Wentao. A New Method of Modeling Spatio-temporal Sequence by Considering Spatial Scale Characteristics[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1625-1632. DOI: 10.13203/j.whugis20130842
    [4]FU Zhongliang, LIU Siyuan. MR-tree with Voronoi Diagrams for Parallel Spatial Queries[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1490-1494.
    [5]HE Chu, LIU Ming, XU Lianyu, LIU Longzhu. A Hierarchical Classification Method Based on Feature Selection and Adaptive Decision Tree for SAR Image[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 46-49.
    [6]ZHANG Lu, GAO Zhihong, LIAO Mingsheng, LI Xinyan. Estimating Urban Impervious Surface Percentage with Multi-source Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1212-1216.
    [7]HAN Tao, XU Xiaotao, XIE Yaowen. Automated Construction and Classification of Decision Tree Classifier Based on Single-Temporal MODIS Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 191-194.
    [8]LIAO Mingsheng, JIANG Liming, LIN Hui, YANG Limin. Estimating Urban Impervious Surface Percent Using Boosting as a Refinement of CART Analysis[J]. Geomatics and Information Science of Wuhan University, 2007, 32(12): 1099-1102.
    [9]YU Xin, ZHENG Zhaobao, YE Zhiwei, TIAN Liqiao. Texture Classification Based on Tree Augmented Naive Bayes Classifier[J]. Geomatics and Information Science of Wuhan University, 2007, 32(4): 287-289.
    [10]GUO Jing, LIU Guangjun, DONG Xurong, GUO Lei. 2-Level R-tree Spatial Index Based on Spatial Grids and Hilbert R-tree[J]. Geomatics and Information Science of Wuhan University, 2005, 30(12): 1084-1088.
  • Cited by

    Periodical cited type(13)

    1. 陈月,王磊,池深深,王羽,戚鑫鑫,朱尚军. 基于SBAS-InSAR和CNN-GRU模型的采动村庄地表沉降监测预计. 金属矿山. 2025(02): 138-144 .
    2. 何毅,姚圣,陈毅,闫浩文,张立峰. ConvLSTM神经网络的时序InSAR地面沉降时空预测. 武汉大学学报(信息科学版). 2025(03): 483-496 .
    3. 倪尔瑞,张建新,邱明剑,权力奥,朱晓峻. 基于SBAS-InSAR技术的淮北市地表沉降监测分析. 北京测绘. 2024(03): 312-317 .
    4. 吴启琛,于瑞鹏,王丽,赵乙泽,范开放. 利用Sentinel-1的山东枣庄高新区地面沉降监测与分析. 地理空间信息. 2024(06): 80-83 .
    5. 杨芳,丁仁军,李勇发. 基于SBAS-InSAR技术的金沙江流域典型滑坡时空演化特征分析. 测绘通报. 2024(11): 102-107 .
    6. 祝杰,李瑜,师宏波,刘洋洋,韩宇飞,邵银星,王坦. 鹤岗煤矿区地面沉降时空特征InSAR时间序列监测研究. 中国地震. 2023(03): 596-608 .
    7. 柴龙飞,魏路,张震. 基于SBAS-InSAR的安徽省宿州市埇桥区2019—2022年地面沉降监测及影响因素分析研究. 安徽地质. 2023(04): 348-352 .
    8. 祝杰,韩宇飞,王坦,李瑜,王阅兵,师宏波,刘洋洋,樊俊屹,邵银星. 2017年九寨沟M_S7.0地震同震地表三维形变场解算研究. 中国地震. 2022(02): 348-359 .
    9. 吴毅彬,葛红斌,刘光庆,刘海旺. 基于MT-InSAR技术的厦门新机场填海区沉降监测. 工程勘察. 2021(02): 57-61 .
    10. 翟振起. 基于InSAR沉降监测技术的城市供水管线安全监测系统开发. 水利科学与寒区工程. 2021(01): 103-106 .
    11. 廖明生,王茹,杨梦诗,王楠,秦晓琼,杨天亮. 城市目标动态监测中的时序InSAR分析方法及应用. 雷达学报. 2020(03): 409-424 .
    12. 熊寻安,王明洲,龚春龙. MT-InSAR技术监测水库土石坝表面变形研究. 测绘地理信息. 2019(05): 78-81 .
    13. 王茹,杨天亮,杨梦诗,廖明生,林金鑫,张路. PS-InSAR技术对上海高架路的沉降监测与归因分析. 武汉大学学报(信息科学版). 2018(12): 2050-2057 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return