SHI Yunfei, LI Deqiang, ZHANG Lingling, CAI Zhenfeng, ZHANG Piya. Construction of Property Solids with Exterior Topology and Its Representation Using 3-Combinatorial Maps[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 617-624. DOI: 10.13203/j.whugis20170183
Citation: SHI Yunfei, LI Deqiang, ZHANG Lingling, CAI Zhenfeng, ZHANG Piya. Construction of Property Solids with Exterior Topology and Its Representation Using 3-Combinatorial Maps[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 617-624. DOI: 10.13203/j.whugis20170183

Construction of Property Solids with Exterior Topology and Its Representation Using 3-Combinatorial Maps

Funds: 

The Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Land and Resources KF-2016-02-017

the National Natural Science Foundation of China 41201407

More Information
  • Author Bio:

    SHI Yunfei, PhD, associate professor, specializes in the theories and application of 3DGIS and digital cadastre. E-mail:55734619@qq.com

  • Received Date: January 26, 2018
  • Published Date: April 04, 2019
  • In order to generate and represent property solids with exterior topology. Based on the existing floor-plans, this paper proposes a method to adopt the way of extruding floor-plans to create 3D models of property solids, and to use 3-combinatorial maps to represent interior and exterior topology of property solids. The results are as follows:(1) A delivery method of intervals is proposed based on incidence graphs with weight and incidence matrix. (2) According to the comparison relationship between old and new intervals, a method for generating darts of 3-combinatorial maps is proposed. (3) An algorithm for adding β relations of 3-combinatorial maps is proposed. Research conclusions show that property solids can be created by extrusion and 3-combinatorial maps, and represent interior and exterior topology of property solids and improve efficiency of constructing property solids.
  • [1]
    应申, 郭仁忠, 靳凤攒, 等.利用CityGML模型自动构建三维封闭建筑体[J].武汉大学学报·信息科学版, 2018, 43(5):732-738 http://ch.whu.edu.cn/CN/abstract/abstract6047.shtml

    Ying Shen, Guo Renzhong, Jin Fengzan, et al. Auto-Construction of 3D Colsed Buildings from CityGML LoD3[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5):732-738 http://ch.whu.edu.cn/CN/abstract/abstract6047.shtml
    [2]
    地理信息空间模式[S].北京: 中国标准出版社, 2009

    GB/T 23707-2009.Geographic Information-Spatial Schema[S]. Beijing: China Standards Publishing House, 2009(GB/T 23707-2009.
    [3]
    Ledoux H, Meijers M. Topologically Consistent 3D City Models Obtained by Extrusion[J]. International Journal of Geographical Information Science, 2011, 25(4):557-574 doi: 10.1080/13658811003623277
    [4]
    Baumgart B G. A Polyhedron Representation for Computer Vision[C]. Proc of AFIPS National Computer Conference, Anaheim, California, 1975
    [5]
    Kettner L. Using Generic Programming for Designing a Data Structure for Polyhedral Surfaces[J]. Computational Geometry, 1999, 13(1):65-90 doi: 10.1016/S0925-7721(99)00007-3
    [6]
    赵志刚.三维地籍空间数据模型拓扑构建、维护与应用研究[D].武汉: 武汉大学, 2011

    Zhao Zhigang. Research on Topology Construction, Maintenance and Application of 3D Cadastral Spatial Data Model[D]. Wuhan: Wuhan University, 2011
    [7]
    Damiand G, Lienhardt P. Combinatorial Maps:Efficient Data Structures for Computer Graphics and Image Processing[M]. Florida:Taylor and Francis Group/CRC Press, 2014
    [8]
    Ohori K A, Ledoux H, Stoter J. A Dimension-Independent Extrusion Algorithm Using Generalised Maps[J]. International Journal of Geographical Information Science, 2015, 29(7):1-21 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/13658816.2015.1010535
    [9]
    郭仁忠, 应申, 李霖.基于面片集合的三维地籍产权体的拓扑自动构建[J].测绘学报, 2012, 41(4):620-626 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201204025

    Guo Renzhong, Ying Shen, Li Lin. Automatic Construction of 3D Valid Solids for 3D Cadastral Objects Based on Facet Sets[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(4):620-626 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201204025
    [10]
    Ying Shen, Guo Renzhong, Li Lin, et al. Construction of 3D Volumetric Objects for a 3D Cadastral System[J]. Transaction of GIS, 2014, doi: 10.1111/tgis.12129
  • Related Articles

    [1]WANG Longyu, GUO Jing, LI Zhenhong, YU Chen, WANG Chen, ZHAO Qile. Centimeter Level Orbit Determination for GF3A SAR Satellite with Zero-Difference Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1546-1555. DOI: 10.13203/j.whugis20240077
    [2]KUANG Kaifa, YANG Yuchen, WEN Fangying, CHEN Zheng, HAN Houzeng, WANG Jian. BDS-3 Real-Time Filtered Precise Orbit Determination with Undifferenced Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1223-1231. DOI: 10.13203/j.whugis20230055
    [3]GENG Jianghui, YAN Zhe, WEN Qiang. Multi-GNSS Satellite Clock and Bias Product Combination: The Third IGS Reprocessing Campaign[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1070-1081. DOI: 10.13203/j.whugis20230071
    [4]KAN Haoyu, HU Zhigang, LÜ Yifei, XIE Xin, ZHOU Renyu, ZHAO Qile. Performance Evaluation of BDS-3 Spaceborne Atomic Clock Using Different Time Synchronization Systems[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 604-610. DOI: 10.13203/j.whugis20210286
    [5]ZHANG Wanwei, WANG Fuhong, GONG Xuewen, GUO Lei. A Centimeter-Level Real-Time Orbit Determination Method Using Space-Borne GPS Measurements Considering IGS-RTS Data Receiving Interruption[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1620-1626. DOI: 10.13203/j.whugis20200432
    [6]LIU Shuo, ZHANG Lei, LI Jian. A Modified Wide Lane Bootstrapping Ambiguity Resolution Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 637-642. DOI: 10.13203/j.whugis20150462
    [7]TIAN Yingguo, HAO Jinming, CHEN Mingjian, YU Heli, HENG Peishen. Impact of Sample Rate of GPS Satellite Clock and Observation Data on LEO GPS-Based Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1792-1796. DOI: 10.13203/j.whugis20150591
    [8]ZHANG Xiaohong, LI Pan, ZUO Xiang. Kinematic Precise Orbit Determination Based on Ambiguity-Fixed PPP[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1009-1013.
    [9]LIU Jihua, OU Jikun, SUN Baoqi, ZHONG Shiming. The GEO Satellite Precise Orbit Determination Based on Inter-satellite Single Difference Method[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 24-28.
    [10]HAN Baomin. Densification Methods of GPS Satellite Clock Errors and Their Impact on Orbit Determination Precision of LEOs[J]. Geomatics and Information Science of Wuhan University, 2006, 31(12): 1075-1078.
  • Cited by

    Periodical cited type(13)

    1. 陈月,王磊,池深深,王羽,戚鑫鑫,朱尚军. 基于SBAS-InSAR和CNN-GRU模型的采动村庄地表沉降监测预计. 金属矿山. 2025(02): 138-144 .
    2. 何毅,姚圣,陈毅,闫浩文,张立峰. ConvLSTM神经网络的时序InSAR地面沉降时空预测. 武汉大学学报(信息科学版). 2025(03): 483-496 .
    3. 倪尔瑞,张建新,邱明剑,权力奥,朱晓峻. 基于SBAS-InSAR技术的淮北市地表沉降监测分析. 北京测绘. 2024(03): 312-317 .
    4. 吴启琛,于瑞鹏,王丽,赵乙泽,范开放. 利用Sentinel-1的山东枣庄高新区地面沉降监测与分析. 地理空间信息. 2024(06): 80-83 .
    5. 杨芳,丁仁军,李勇发. 基于SBAS-InSAR技术的金沙江流域典型滑坡时空演化特征分析. 测绘通报. 2024(11): 102-107 .
    6. 祝杰,李瑜,师宏波,刘洋洋,韩宇飞,邵银星,王坦. 鹤岗煤矿区地面沉降时空特征InSAR时间序列监测研究. 中国地震. 2023(03): 596-608 .
    7. 柴龙飞,魏路,张震. 基于SBAS-InSAR的安徽省宿州市埇桥区2019—2022年地面沉降监测及影响因素分析研究. 安徽地质. 2023(04): 348-352 .
    8. 祝杰,韩宇飞,王坦,李瑜,王阅兵,师宏波,刘洋洋,樊俊屹,邵银星. 2017年九寨沟M_S7.0地震同震地表三维形变场解算研究. 中国地震. 2022(02): 348-359 .
    9. 吴毅彬,葛红斌,刘光庆,刘海旺. 基于MT-InSAR技术的厦门新机场填海区沉降监测. 工程勘察. 2021(02): 57-61 .
    10. 翟振起. 基于InSAR沉降监测技术的城市供水管线安全监测系统开发. 水利科学与寒区工程. 2021(01): 103-106 .
    11. 廖明生,王茹,杨梦诗,王楠,秦晓琼,杨天亮. 城市目标动态监测中的时序InSAR分析方法及应用. 雷达学报. 2020(03): 409-424 .
    12. 熊寻安,王明洲,龚春龙. MT-InSAR技术监测水库土石坝表面变形研究. 测绘地理信息. 2019(05): 78-81 .
    13. 王茹,杨天亮,杨梦诗,廖明生,林金鑫,张路. PS-InSAR技术对上海高架路的沉降监测与归因分析. 武汉大学学报(信息科学版). 2018(12): 2050-2057 .

    Other cited types(4)

Catalog

    Article views (1189) PDF downloads (146) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return