KAN Haoyu, HU Zhigang, LÜ Yifei, XIE Xin, ZHOU Renyu, ZHAO Qile. Performance Evaluation of BDS-3 Spaceborne Atomic Clock Using Different Time Synchronization Systems[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 604-610. DOI: 10.13203/j.whugis20210286
Citation: KAN Haoyu, HU Zhigang, LÜ Yifei, XIE Xin, ZHOU Renyu, ZHAO Qile. Performance Evaluation of BDS-3 Spaceborne Atomic Clock Using Different Time Synchronization Systems[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 604-610. DOI: 10.13203/j.whugis20210286

Performance Evaluation of BDS-3 Spaceborne Atomic Clock Using Different Time Synchronization Systems

More Information
  • Received Date: June 02, 2021
  • Available Online: April 16, 2023
  • Published Date: April 04, 2023
  •   Objectives  The performance of the global navigation satellite system (GNSS) spaceborne atomic clock affects the entire navigation system, by having direct impact on GNSS measurement quality, ranging precision, clock prediction and satellite autonomous navigation capabilities. Different time synchronization systems may have different impact on the evaluation of spaceborne atomic clock. Precise clock bias data determined by inter-satellite link (ISL), two-way time transfer (TWTT) and orbit determination and time synchronization (ODTS) system are used to further evaluate the performance of BeiDou-3 on-orbit atomic clock.
      Methods  Quadratic polynomial model and total Allan / Hadamard variance are used to analyze the performance of the BeiDou-3 navigation satellite system (BDS-3) satellite clock data of the three different time synchronization systems.
      Results  The result shows that the frequency accuracy and frequency drift of the above three clock bias determination systems are consistent. The frequency accuracy of all satellites is within the range of (-4~2)×10-11. Frequency accuracy of hydrogen clock is better than that of rubidium clock. The frequency drift based on the ISL system is slightly better than that of the ODTS, the three clock determination systems have their own advantages in evaluating the stability of the atomic clock, respectively. For short-term stability, the ODTS whose 3 000 s stability reaches 3×10-14 is better than that of ISL, and hydrogen clock is better than rubidium clock. For medium-term and long-term stability, when the averaging time is greater than 1×104 s, the result of ISL is closer to the actual condition of the BDS-3 spaceborne clock. For long-term stability more than 7 days, the broadcast ephemeris bias based on TWTT system can be used for rapid evaluation, which result is close to ODTS and ISL.
      Conclusions  The three clock bias determination systems can be used to evaluate the frequency accuracy and frequency drift of on-orbit atomic clocks with basically consistent statistical results. The three clock bias determination systems have their own advantages in assessing the stability of the orbiting satellite clock when selecting different averaging time.
  • [1]
    郭海荣. 导航卫星原子钟时频特性分析理论与方法研究[D]. 郑州: 信息工程大学, 2006.

    Guo Hairong. Study on the Analysis Theories and Algorithms of the Time and Frequency Characterization for Atomic Clocks of Navigation Satellites[D]. Zhengzhou: Information Engineering University, 2006.
    [2]
    王宇谱, 李博, 白文乾, 等. 导航卫星钟差预报研究综述[C]//第九届中国卫星导航学术年会, 哈尔滨, 2018.

    Wang Yupu, Li Bo, Bai Wenqian, et al. A Review of Navigation Satellite Clock Bias Prediction[C]//The 9th Chinese Satellite Navigation Conference, Harbin, China, 2018.
    [3]
    CSNO. Report on the Development of BeiDou Navigation Satellite System (version 2.1)[R]//OFFICE CSN, Beijing, China, 2012.
    [4]
    Yang Y X, Tang J, Montenbruck O. Chinese Navigation Satellite Systems[M]//Cham: Springer International Publishing, 2017.
    [5]
    黄观文, 余航, 郭海荣, 等. 北斗在轨卫星钟中长期钟差特性分析[J]. 武汉大学学报(信息科学版), 2017, 42(7): 982-988. doi: 10.13203/j.whugis20140827

    Huang Guanwen, Yu Hang, Guo Hairong, et al. Analysis of the Mid-long Term Characterization for BDS On-orbit Satellite Clocks[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 982-988. doi: 10.13203/j.whugis20140827
    [6]
    刘帅, 贾小林, 孙大伟. GNSS星载原子钟性能评估[J]. 武汉大学学报(信息科学版), 2017, 42(2): 277-284. doi: 10.13203/j.whugis20150344

    Liu Shuai, Jia Xiaolin, Sun Dawei. Performance Evaluation of GNSS On-board Atomic Clock[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 277-284. doi: 10.13203/j.whugis20150344
    [7]
    陈金平, 胡小工, 唐成盼, 等. 北斗新一代试验卫星星钟及轨道精度初步分析[J]. 中国科学: 物理学力学天文学, 2016, 46(11): 85-95. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201611009.htm

    Chen Jinping, Hu Xiaogong, Tang Chengpan, et al. Orbit Determination and Time Synchronization for New-Generation BeiDou Satellites: Preliminary Results[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2016, 46(11): 85-95. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201611009.htm
    [8]
    杨玉锋, 彭勇, 刘梦晗, 等. BDS-3在轨卫星钟性能评估与分析[J]. 导航定位学报, 2021, 9(1): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-CHWZ202101009.htm

    Yang Yufeng, Peng Yong, Liu Menghan, et al. Performance Evaluation and Analysis of BDS-3 On-orbit Satellite Clocks[J]. Journal of Navigation and Positioning, 2021, 9(1): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-CHWZ202101009.htm
    [9]
    Wang Wei. Spaceborne Atomic Clock Performance Review of BDS-3 MEO Satellites[J]. Measurement, 2021, 175: 109075. doi: 10.1016/j.measurement.2021.109075
    [10]
    毛亚, 王潜心, 胡超, 等. BDS-3卫星钟差特性分析[J]. 武汉大学学报(信息科学版), 2020, 45(1): 53-61. doi: 10.13203/j.whugis20180224

    Mao Ya, Wang Qianxin, Hu Chao, et al. Analysis of the Characterization for BDS-3 Satellite Clock Error[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 53-61. doi: 10.13203/j.whugis20180224
    [11]
    Xie X, Geng T, Zhao Q L, et al. Orbit and Clock Analysis of BDS-3 Satellites Using Inter-Satellite Link Observations[J]. Journal of Geodesy, 2020, 94(7): 64. doi: 10.1007/s00190-020-01394-4
    [12]
    程彤, 王潜心, 胡超, 等. BDS-2和BDS-3卫星原子钟特性分析[J]. 测绘科学, 2020, 45(12): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD202012011.htm

    Cheng Tong, Wang Qianxin, Hu Chao, et al. Analysis of the Atomic Clock Characteristics of BDS-2 and BDS-3 Satellites[J]. Science of Surveying and Mapping, 2020, 45(12): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD202012011.htm
    [13]
    姜秋晨, 赵琳琳, 刘万科, 等. BD-2星载原子钟长期在轨性能评估[J]. 大地测量与地球动力学, 2019, 39(10): 1047-1052. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201910012.htm

    Jiang Qiuchen, Zhao Linlin, Liu Wanke, et al. Long-Term Performance Assessment of BD-2 On-board Atomic Clocks[J]. Journal of Geodesy and Geodynamics, 2019, 39(10): 1047-1052. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201910012.htm
    [14]
    王彬. BDS在轨卫星钟特征分析、建模及预报研究[D]. 武汉: 武汉大学, 2016.

    Wang Bin. Analysis of BDS Satellite Clock in Orbit, Modelling and Its Prediction Research[D]. Wuhan: Wuhan University, 2016.
    [15]
    Chen G, Zhou R Y, Hu Z G, et al. Statistical Characterization of the Signal-in-Space Errors of the BDS: A Comparison Between BDS-2 and BDS-3[J]. GPS Solutions, 2021, 25(3): 112.
    [16]
    贾小林, 冯来平, 毛悦, 等. GPS星载原子钟性能评估[J]. 时间频率学报, 2010, 33(2): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-SXTT201002007.htm

    Jia Xiaolin, Feng Laiping, Mao Yue, et al. Performance Evaluation of GPS On-board Clock[J]. Journal of Time and Frequency, 2010, 33(2): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-SXTT201002007.htm
    [17]
    王宁, 王宇谱, 李林阳, 等. BDS星载原子钟频率稳定性分析[J]. 武汉大学学报(信息科学版), 2017, 42(9): 1256-1263. doi: 10.13203/j.whugis20150806

    Wang Ning, Wang Yupu, Li Linyang, et al. Stability Analysis of the Space-Borne Atomic Clock Frequency for BDS[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1256-1263. doi: 10.13203/j.whugis20150806
    [18]
    伍贻威, 杨斌, 肖胜红, 等. 原子钟模型和频率稳定度分析方法[J]. 武汉大学学报(信息科学版), 2019, 44(8): 1226-1232. doi: 10.13203/j.whugis20180058

    Wu Yiwei, Yang Bin, Xiao Shenghong, et al. Atomic Clock Models and Frequency Stability Analyses[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1226-1232. doi: 10.13203/j.whugis20180058
    [19]
    Lü Y F, Geng T, Zhao Q L, et al. Characteristics of BeiDou-3 Experimental Satellite Clocks[J]. Remote Sensing, 2018, 10(11): 1847.
  • Related Articles

    [1]ZHANG Fan, CHAI Hongzhou, WANG Min, XIAO Guorui, ZHANG Qiankun, DU Zhenqiang. Undifferenced and Uncombined PPP Ambiguity Resolution Combined with GPS/GLONASS Triple-Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1900-1910. DOI: 10.13203/j.whugis20220315
    [2]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [3]SONG Weiwei, ZHAO Xinke, LOU Yidong, SUN Weibin, ZHAO Zhengyu. Performance Evaluation of BDS-3 PPP-B2b Service[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 408-415. DOI: 10.13203/j.whugis20200686
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]GU Shengfeng, DAI Chunqi, HE Chengpeng, FANG Lizhe, WANG Zihao. Analysis of Semi-tightly Coupled Multi-GNSS PPP-RTK/VIO for Vehicle Navigation in Urban Areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1852-1861. DOI: 10.13203/j.whugis20210615
    [6]YAO Yibin, FENG Xinying, PENG Wenjie, LIU Lei. Local Atmosphere Augmentation Based on CORS for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1739-1748. DOI: 10.13203/j.whugis20180131
    [7]SONG Chao, HAO Jinming. Instantaneous Re-convergence of Kinematic PPP by the Use of Relationship Between Multiple Receiver Ambiguity[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 595-599, 690. DOI: 10.13203/j.whugis20140747
    [8]GUO Fei, ZHANG Xiaohong. Processing Capacity for GPS Data with Clock Slip Using Online PPP Services[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1333-1336.
    [9]TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. The Research of Dual Frequency Solution Method for Single Frequency Precise Point Positioning(PPP) Based on SEID Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1187-1190.
    [10]ZHAO Jianhu, WANG Shengping, ZHANG Hongmei, WEN Weidong. Long-Distance and On-the-Fly GPS Tidal Level Measurement Based on GPS PPK/PPP[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 910-913.
  • Cited by

    Periodical cited type(13)

    1. 冯晓亮,陈欢,李厚芝. 不同观测环境中的多模GNSS数据质量自动化检测方法. 测绘工程. 2024(06): 56-61 .
    2. 刘嘉伟,孙保琪,韩蕊,张喆,王侃,袁海波,杨旭海. GNSS多系统RTK授时性能分析. 导航定位与授时. 2023(03): 49-58 .
    3. 王浩浩,郝明,庄文泉. GNSS实时卫星钟差估计在地震监测中的应用. 导航定位与授时. 2023(03): 108-116 .
    4. 周长江,余海锋,王林伟,雷云平,岳彩亚. 无频间钟偏差改正的BDS-2三频非组合PPP随机模型优化. 测绘通报. 2023(12): 164-168 .
    5. 潘丽静,刘翔,夏川茹,王雷雷. GNSS精密卫星钟差实时估计与分析. 城市勘测. 2021(06): 73-76 .
    6. 郭磊,王甫红,桑吉章,张万威. 一种新的利用历元间位置变化量约束的GNSS导航算法. 武汉大学学报(信息科学版). 2020(01): 21-27 .
    7. 陶钧,张柔. GPS/BeiDou/Galileo/GLONASS实时精密卫星钟差估计. 测绘地理信息. 2020(03): 102-106 .
    8. 黄观文,王浩浩,谢威,曹钰. GNSS实时卫星钟差估计技术进展. 导航定位与授时. 2020(05): 1-9 .
    9. 张浩,赵兴旺,陈佩文,谢毅. GPS/BDS卫星钟差融合解算模型及精度分析. 合肥工业大学学报(自然科学版). 2020(09): 1192-1196 .
    10. 叶珍,李浩军. GNSS卫星钟差估计与结果分析. 导航定位与授时. 2019(03): 88-94 .
    11. 盛剑锋,张彩红,谭凯. 一种全球导航卫星系统钟差估计优化方案的量化研究. 科学技术与工程. 2019(14): 14-21 .
    12. 王尔申,赵珩,曲萍萍,庞涛,孙军. 基于拉格朗日插值法的卫星导航空间信号精度评估算法. 沈阳航空航天大学学报. 2019(04): 43-48 .
    13. 李云,崔文刚. 精密单点定位技术发展及应用. 科学技术与工程. 2019(27): 1-11 .

    Other cited types(10)

Catalog

    Article views (1142) PDF downloads (123) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return