TIAN Yingguo, HAO Jinming, CHEN Mingjian, YU Heli, HENG Peishen. Impact of Sample Rate of GPS Satellite Clock and Observation Data on LEO GPS-Based Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1792-1796. DOI: 10.13203/j.whugis20150591
Citation: TIAN Yingguo, HAO Jinming, CHEN Mingjian, YU Heli, HENG Peishen. Impact of Sample Rate of GPS Satellite Clock and Observation Data on LEO GPS-Based Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1792-1796. DOI: 10.13203/j.whugis20150591

Impact of Sample Rate of GPS Satellite Clock and Observation Data on LEO GPS-Based Precise Orbit Determination

More Information
  • Author Bio:

    TIAN Yingguo, PhD candidate, specializes in LEO satellite precise orbit determination. E-mail: tianyg1987@sina.com

  • Received Date: October 11, 2015
  • Published Date: December 04, 2017
  • The influence of GPS precise clock and observation data sampling internal on LEO kinematic and reduced-dynamic precise orbit determination (POD) was analyzed. The several experiments of LEO POD were carried out respectively by using the 30 s or 5 s sampling interval GPS precise clock from CODE and the 30 s or 10 s GPS observation data. The results show that 5 s GPS clock and 10 s observation data comparing with 30 s clock and 30 s observation data, the accuracy of reduced-dynamic POD is improved by 16%, and the kinematic POD is 8.8%. The accuracy of LEO POD is the worst by using 10 s observation data and 30 s GPS clock. For 30 s observation data, the accuracy of LEO POD by using 30 s GPS clock is consistent with 5 s GPS clock products from CODE.
  • [1]
    Melbourne W G, Davis E S, Yunck T P, et al. The GPS Flight Experiment on TOPEX/POSEIDON[J]. Geophysical Research Letters, 1994, 21(19):2171-2174 doi: 10.1029/94GL02192
    [2]
    Haines B, Bertiger W, Desai S, et al. Initial Orbit Determination Results for Jason-1:Towards a 1 cm Orbit[J].Navigation, 2003, 50(3):171-180 doi: 10.1002/navi.2003.50.issue-3
    [3]
    Svehla D, Rothacher M. Kinematic and Reduced-Dynamic Precise Orbit Determination of Low Earth Orbiters[J]. Advances in Geosciences, 2003, 1:47-56 doi: 10.5194/adgeo-1-47-2003
    [4]
    Kang Z, Tapley B, Bettadpur S, et al. Precise Orbit Determination for the GRACE Mission Usingonly GPS Data[J]. Journal of Geodesy, 2006, 80(6):322-331 doi: 10.1007/s00190-006-0073-5
    [5]
    Bock H, Jaggi A, Svehla D, et al. Precise Orbit Determination for the GOCE Satellite Using GPS[J]. Advances in Space Research, 2007, 39(10):1638-1647 doi: 10.1016/j.asr.2007.02.053
    [6]
    赵齐乐, 刘经南, 葛茂荣, 等.用PANDA对GPS和CHAMP卫星精密定轨[J].大地测量与地球动力学, 2005, 25(2):113-116 doi: 10.3969/j.issn.1671-5942.2005.02.020

    Zhao Qile, Liu Jingnan, Ge Maorong, et al.Precise Orbit Determination of GPS and CHAMP Satellites with PANDA Software[J].Journal of Geodesy and Geodynamics, 2005, 25(2):113-116 doi: 10.3969/j.issn.1671-5942.2005.02.020
    [7]
    Dow J M, Neilan R E, Rizos C. The International GNSS Service in a Changing Landscape of Global Navigation Satellite Systems[J]. Journal of Geodesy, 2008, 83(3-4):191-198 doi: 10.1007/s00190-008-0300-3
    [8]
    Montenbruck O, Gill E, Kroes R. Rapid Orbit Determination of LEO Satellites Using IGS Clock and Ephemeris Products[J]. GPS Solutions, 2005, 9(3):226-235 doi: 10.1007/s10291-005-0131-0
    [9]
    Hugentobler U. CODE High Rate Clocks. IGS Mail No. 4913[OL]. igscb.jpl.nasa.gov/mail/igsmail/2004/msg00136.html, 2004
    [10]
    Gendt G. Combined IGS Clocks with 30 Second Sampling Rate. IGS Mail No. 55253[OL]. igscb.jpl.nasa.gov/mail/igsmail/2007/msg00003.html, 2006
    [11]
    Bock H, Dach R, Jaggi A, et al. High-Rate GPS Clock Corrections from CODE:Support of 1Hz Applications[J].Journal of Geodesy, 2009, 83(11):1083-1094 doi: 10.1007/s00190-009-0326-1
    [12]
    Schaer S, Dach R. Model Changes Made at CODE. IGS Mail No.5771[OL]. http://igscb.jpl.nasa.gov, 2008
    [13]
    Allan D W. Time and Frequency (Time-Domain) Characterization, Estimation, and Prediction of Precision Clocks and Oscillators[J].IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 1987, 34(6):647-654 https://www.researchgate.net/publication/5560127_Time_and...
    [14]
    Case K, Kruizinga G L H, Wu S C. GRACE Level 1b Data Product User Handbook, JPL D-22027[OL]. http://podaac.jpl.nasa.gov/grace/documentation.html, 2004
    [15]
    田英国, 郝金明, 刘伟平, 等.利用KBR数据检核GRACE卫星精密轨道[J].测绘科学技术学报, 2014, 31(6):580-583 http://www.cqvip.com/QK/98086A/201406/663713483.html

    Tian Yingguo, Hao Jinming, Liu Weiping, et al.Checking the GRACE Satellite Orbit Precision Using the KBR Data[J]. Journal of Geomatics Science and Technology, 2015, 31(6):580-583 http://www.cqvip.com/QK/98086A/201406/663713483.html
    [16]
    秦显平, 焦文海, 程芦颖, 等.利用SLR检核CHAMP卫星轨道[J].武汉大学学报·信息科学版, 2005, 30(1):38-41 http://ch.whu.edu.cn/CN/abstract/abstract2075.shtml

    Qin Xianping, Jiao Wenhai, Cheng Luying, et al. Evaluation of CHAMP Satellite Orbit with SLR Measurements[J]. Geomantic and Information Science of Wuhan University, 2005, 30(1):38-41 http://ch.whu.edu.cn/CN/abstract/abstract2075.shtml
    [17]
    Jaggi A. Pseudo-Stochastic Orbit Modeling Low Earth Satellites Using the Global Positioning System[D]. Schwitzerland:Astronomical Institute University of Berne, 2007 https://boris.unibe.ch/25278/
    [18]
    周晓青, 胡志刚, 张新远.低轨卫星星载GNSS精密定轨的精度检核方法[J].武汉大学学报·信息科学版, 2010, 35(11):1342-1345 http://ch.whu.edu.cn/CN/abstract/abstract1109.shtml

    Zhou Xiaoqing, Hu Zhigang, Zhang Xinyuan.Discussion on POD Accuracy Evaluations for Satellite-Bone LEO Satellites[J]. Geomantic and Information Science of Wuhan University, 2010, 35(11):1342-1345 http://ch.whu.edu.cn/CN/abstract/abstract1109.shtml
  • Cited by

    Periodical cited type(7)

    1. 牟希农. 基于小波域马尔可夫随机场的医学影像图像提取实现研究. 贵州大学学报(自然科学版). 2020(01): 74-77 .
    2. 陈志坤,江俊君,姜鑫维,白露,蔡之华. 一种基于改进双边滤波的鲁棒高光谱遥感图像特征提取方法. 武汉大学学报(信息科学版). 2020(04): 504-510 .
    3. 郭利强,孟庆超. 基于多标签共享子空间学习和内核脊回归的空谱分类算法. 光子学报. 2020(05): 121-133 .
    4. 李玉,甄畅,石雪,赵泉华. 基于熵加权K-means全局信息聚类的高光谱图像分类. 中国图象图形学报. 2019(04): 630-638 .
    5. 曲海成,郭月,王媛媛. 基于优势集聚类和马尔科夫随机场的高光谱图像分类算法. 国土资源遥感. 2019(02): 24-31 .
    6. 职露,余旭初,邹滨,刘冰. 多层级二值模式的高光谱影像空-谱分类. 武汉大学学报(信息科学版). 2019(11): 1659-1666 .
    7. 韦春桃,赵平,肖博林,白风,李小勇,杨晚芸. 结合双树复小波纹理特征和MRF模型的遥感图像分割. 测绘通报. 2019(10): 40-45 .

    Other cited types(8)

Catalog

    Article views (2295) PDF downloads (429) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return