WU Xiaolong, YANG Zhiqiang, GONG Yun. Present-day Crustal Deformation in Arc-Continent Collision Zone of the Southeastern Eurasia Plate[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 240-245, 253. DOI: 10.13203/j.whugis20170081
Citation: WU Xiaolong, YANG Zhiqiang, GONG Yun. Present-day Crustal Deformation in Arc-Continent Collision Zone of the Southeastern Eurasia Plate[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 240-245, 253. DOI: 10.13203/j.whugis20170081

Present-day Crustal Deformation in Arc-Continent Collision Zone of the Southeastern Eurasia Plate

Funds: 

The National Natural Science Foundation of China 51674195

the PhD Startup Foundation of Xi'an University of Science and Technology 2016QDJ049

More Information
  • Author Bio:

    WU Xiaolong, PhD, lecturer, specializes in the crustal deformation monitoring and analysis based on geodetic surveying technologies. E-mail: xlong_wu@126.com

  • Received Date: November 06, 2017
  • Published Date: February 04, 2019
  • Based on the systematic collection of the GPS observations in China:Fujian, China:Taiwan and Philippine:Luzon, this paper obtains the current crustal horizontal velocity field of the arc-continent collision zone. Targeting the specific areas whose super-long span is more than 1000 km, this paper builds the least squares collocation model on the basis of ellipsoidal coordinates, uniformly calculating current GPS strain distribution of this collision zone. The results show that china:Taiwan province has the strongest crustal deformation, followed by Philippine:Luzon and China:Fujian regions respectively. The Philippine sea plate at the east Taiwan, China collides intensively with the Eurasia plate, and the collision is severely consumed through the central mountain's uplifting, the thrust napping and the tectonic escaping. The overall deformation characteristics is closely related to the structural variation of the Philippine sea plate. While the relative deformation in Luzon region is mainly involved with the relative sliding of the Philippine fault.
  • [1]
    Yu S B, Kuo L C, Punongbayan R S, et al. GPS Observation of Crustal Deformation in the Taiwan-Luzon Region[J].Geophysical Research Letters, 1999, 26(7):923-926 doi: 10.1029/1999GL900148
    [2]
    Galgana G, Hamburger M, Mccaffrey R, et al. Analysis of Crustal Deformation in Luzon, Philippines Using Geodetic Observations and Earthquake Focal Mechanisms[J]. Tectonophysics, 2007, 432(432):63-87 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=05fa0ae42d739c218bb670e998ca6464
    [3]
    江在森, 刘经南.应用最小二乘配置建立地壳运动速度场与应变场的方法[J].地球物理学报, 2010, 53(5):1109-1117 doi: 10.3969/j.issn.0001-5733.2010.05.011

    Jiang Zaisen, Liu Jingnan. The Method in Establi-shing Strain Field and Velocity Field of Crustal Movement Using Least Squares Collocation[J]. Chinese J Geophysics, 2010, 53(5):1109-1117 doi: 10.3969/j.issn.0001-5733.2010.05.011
    [4]
    武艳强, 江在森, 杨国华, 等.利用最小二乘配置在球面上整体解算GPS应变场的方法及应用[J].地球物理学报, 2009, 52(7):1707-1714 doi: 10.3969/j.issn.0001-5733.2009.07.005

    Wu Yanqiang, Jiang Zaisen, Yang Guohua, et al. The Application and Method of GPS Strain Calculation in Whole Mode Using Collocation in Sphere Surface[J]. Chinese J Geophysics, 2009, 52(7):1707-1714 doi: 10.3969/j.issn.0001-5733.2009.07.005
    [5]
    Saffet E, Muhammed Ş, İbrahim T, et al. GPS Velocity and Strain Rate Fields in Southwest Anatolia from Repeated GPS Measurements[J]. Sensors, 2009, 9(3):2017-2034 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_b363ead2e7936f28a1afcb72dda79fe2
    [6]
    石耀林, 朱守彪.用GPS位移资料计算应变的方法的讨论[J].大地测量与地球动力学, 2006, 26(1):1-8 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz200601001

    Shi Yaolin, Zhu Shoubiao. Discussion on Method of Calculating Strain with GPS Displacement Data[J]. Journal of geodesy and geodynamics, 2006, 26(1):1-8 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz200601001
    [7]
    李延兴, 胡新康, 李智, 等.台海地区的地壳运动与变形[J].地震学报, 2002, 24(5):487-495 doi: 10.3321/j.issn:0253-3782.2002.05.005

    Li Yanxing, Hu Xinkang, Li Zhi, et al. Curstal Movement and Deformation in Taiwan and Its Costal Area[J].Acta Seismologica Sinica, 2002, 24(5):487-495 doi: 10.3321/j.issn:0253-3782.2002.05.005
    [8]
    Larson K M, Freymueller J T, Philipsen S. Global Plate Velocities from the Global Positioning System[J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B5):9961-9981 doi: 10.1029/97JB00514
    [9]
    Argus D F, Gordon R G. Tests of the Rigid-Plate Hypothesis and Bounds on Intraplate Deformation Using Geodetic Data from very Long Baseline Interferometry[J]. Journal of Geophysical Research, 1996, 101572(10):555-513 http://cn.bing.com/academic/profile?id=8260490c8bff0986bedba4eebb948261&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    Wu Y, Chang C, Zhao L, et al. Seismic Tomography of Taiwan:Improved Constraints from a Dense Network of Strong Motion Stations[J]. Journal of Geophysical Research:Atmospheres, 2007, 112(B08312):582-596 doi: 10.1029-2007JB004983/
    [11]
    Yu S B, Kuo L C, Punongbayan R S, et al. GPS Observation of Crustal Deformation in the Taiwan-Luzon Region[J]. Geophysical Research Letters, 1999, 26(7):923-926 doi: 10.1029/1999GL900148
    [12]
    杨元喜, 曾安敏, 吴富梅.基于欧拉矢量的中国大陆地壳水平运动自适应拟合推估模型[J].中国科学:地球科学, 2011, 41(8):1116-1125 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201108008.htm

    Yang Yuanxi, Zeng Anmin, Wu Fumei. Horizontal Crustal Movement in China Fitted by Adaptive Collocation with Embedded Euler Vector[J]. Sci China:Earth Sci, 2011, 41(8):1116-1125 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201108008.htm
    [13]
    李庆海.误差不大于10米的工距离大地线长度的计算公式[J].武测资料, 1979(1):18-23 http://www.cnki.com.cn/Article/CJFDTotal-CHXG197901001.htm

    Li Qinghai. A Fommula for Calculating the Length of a Long-distance Geodesic Line with an Error Less than Ten Meters[J].Materials of CHXG, 1979(1):18-23 http://www.cnki.com.cn/Article/CJFDTotal-CHXG197901001.htm
  • Related Articles

    [1]LONG En, LÜ Shouye, QU Xiaofei, MENG Gang, LAI Guangling, YANG Yuke. Height Inversion Model of Oil Tank Using Satellite Imagery with Same Name Arc Distance[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 411-418. DOI: 10.13203/j.whugis20210239
    [2]LÜ Pinji, LI Zhengyuan, SUN Lingli, LIN Jun, TANG Lei, NI Yipeng. Analysis of Impact of the Tonga Volcanic Eruption in 2022 on the Strain Observation of Chinese Mainland[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 927-933. DOI: 10.13203/j.whugis20220174
    [3]LEI Xiangxu, SANG Jizhang, LI Zhenwei, CHEN Junyu, DU Jianli, HE Donglei. Association of Very-Short-Arc Angles Data for LEO Space Objects[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1526-1532. DOI: 10.13203/j.whugis20180386
    [4]LOU Yidong, YAO Xiuguang, LIU Yang, ZHENG Fu. Impact of Ambiguity Resolution and Arc Length on Regional Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 249-254. DOI: 10.13203/j.whugis20140201
    [5]LIU Xiaoxia, JIANG Zaisen, WU Yanqiang. The Applicability of Kriging Interpolation Method in GPSVelocity Gridding and Strain Calculating[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 457-461. DOI: 10.13203/j.whugis20120086
    [6]WU Yanqiang, JIANG Zaisen, YANG Guohua, FANG Ying. Application and Method of GPS Strain Calculating in Whole Mode Using Multi-Surface Function[J]. Geomatics and Information Science of Wuhan University, 2009, 34(9): 1085-1089.
    [7]DING Kaihua, XU Cajjun. Current Crustal Strain Field in the Sichuan-Yunnan Area by Joint Inversion of GPS and Seismic Moment Tensor[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3): 265-268.
    [8]ZHU Xinhui, SUN Fuping, QIN Yong. Establishment of Plate Motion Model by the Integrated Data of GPS and VLBI[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 604-608.
    [9]DU Ruilin, QIAO Xuejun, YANG Shaomin, WANG Qi. Results of the Crustal Deformation by GPS Survey and Horizontal Strain Rate Fields in the Three Gorges Area[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 768-771.
    [10]Zhang Zuxun, Bao Xiuzhi, Cao Hui. Arc Spline and Arclet Processing[J]. Geomatics and Information Science of Wuhan University, 1994, 19(3): 189-193.
  • Cited by

    Periodical cited type(5)

    1. 黄少华,万永革,冯淦,李枭,关兆萱. 2022年9月17日中国台湾地震序列的触发机制及其动力学成因. 地质力学学报. 2023(05): 674-684 .
    2. 李之诺,卢佳遇,高锐,陈致同. 斜向聚合及弧后伸展作用对台湾北部-琉球地区的构造影响——砂箱模型实验的启示. 地球学报. 2022(05): 609-615 .
    3. 李建涛,刚慧龙. 基于ITRF14框架的URCORS坐标分析. 工程勘察. 2022(10): 62-66 .
    4. 高源,瞿伟,张勤,王庆良,郝明. GNSS揭示的汾渭盆地及周缘现今地壳运动与应变差异. 武汉大学学报(信息科学版). 2021(07): 1063-1070+1113 .
    5. 徐良叶,邵德盛,吴学群,牛甜. 最小二乘配置的云南区域形变与应变特征研究. 测绘科学. 2021(12): 16-23+74 .

    Other cited types(4)

Catalog

    Article views (1579) PDF downloads (242) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return