XIONG Hanjiang, GUO Sheng, ZHENG Xianwei, ZHOU Yan. Indoor Pedestrian Mobile Activity Recognition and Trajectory Tracking[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1696-1703. DOI: 10.13203/j.whugis20170066
Citation: XIONG Hanjiang, GUO Sheng, ZHENG Xianwei, ZHOU Yan. Indoor Pedestrian Mobile Activity Recognition and Trajectory Tracking[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1696-1703. DOI: 10.13203/j.whugis20170066

Indoor Pedestrian Mobile Activity Recognition and Trajectory Tracking

Funds: 

The National Key Research and Development Program of China 2016YFB0502203

Mapping Geographic Information Industry Research Projects of Public Interest Industry 201512009

the Special Research Funding of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing 

More Information
  • Author Bio:

    XIONG Hanjiang, PhD, professor, specializes in 3D GIS and indoor GIS.E-mail:xionghanjiang@163.com

  • Corresponding author:

    ZHENG Xianwei, PhD.E-mail:zhengxw@whu.edu.cn

  • Received Date: September 06, 2017
  • Published Date: November 04, 2018
  • As the basis of indoor location services, indoor localization technology has received more and more attention in recent years. Aiming at the problems of high cost, limited precision and insufficient efficiency in existing indoor positioning technologies, pedestrian dead reckoning (PDR), human acti-vity recognition (HAR) and landmarks are combined to obtain more accurate pedestrian indoor localization. PDR is used to estimate the user's location, and the cumulative error of PDR is reduced by landmarks, which are sensed by HAR. In addition, to solve the initial position determination problem, a hidden Markov model that considers the characteristics of the indoor environment is applied to match the continuous trajectory. The experimental results show that the proposed method has a good performance in activity recognition and positioning accuracy, and can track the user's trajectory efficiently.
  • [1]
    Deng Z, Wang G, Hu Y, et al. Carrying Position Independent User Heading Estimation for Indoor Pedestrian Navigation with Smartphones[J]. Sensors, 2016, 16(5):677-1-677-22 doi: 10.3390/s16050677
    [2]
    Gezici S, Tian Z, Giannakis G B, et al. Localization via Ultra-Wideband Radios:A Look at Positioning Aspects for Future Sensor Networks[J]. IEEE Signal Processing Magazine, 2005, 22(4):70-84 https://ieeexplore.ieee.org/abstract/document/1458289
    [3]
    Thrun S. Probabilistic Robotics[J]. Communications of the ACM, 2002, 45(3):52-57 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027086507/
    [4]
    Zhu W, Cao J, Xu Y, et al. Fault-Tolerant RFID Reader Localization Based on Passive RFID Tags[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(8):2065-2076 doi: 10.1109/TPDS.2013.217
    [5]
    Deng Z, Xu Y, Ma L. Indoor Positioning via Nonlinear Discriminative Feature Extraction in Wireless Local Area Network[J]. Computer Communications, 2012, 35(6):738-747 doi: 10.1016/j.comcom.2011.12.011
    [6]
    Incel O D, Kose M, Ersoy C. A Review and Taxo-nomy of Activity Recognition on Mobile Phones[J]. Bio Nano Science, 2013, 3(2):145-171 http://dl.acm.org/citation.cfm?doid=1964897.1964918
    [7]
    Klasnja P, Pratt W. Healthcare in the Pocket:Mapping the Space of Mobile-Phone Health Interventions[J]. Journal of Biomedical Informatics, 2012, 45(1):184-198 doi: 10.1016/j.jbi.2011.08.017
    [8]
    Yang Z, Wu C, Zhou Z, et al. Mobility Increases Localizability:A Survey on Wireless Indoor Localization Using Inertial Sensors[J]. ACM Computing Surveys (CSUR), 2015, 47(3):1-34 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0235400951/
    [9]
    石高涛, 王伯远, 吴斌.基于WiFi与移动智能终端的室内定位方法综述[J].计算机工程, 2015(9):39-44 doi: 10.3969/j.issn.1000-3428.2015.09.007

    Shi Gaotao, Wang Boyuan, Wu Bin. Overview of Indoor Localization Method Based on WiFi and Mobile Smart Terminal[J]. Computer Engineering, 2015(9):39-44 doi: 10.3969/j.issn.1000-3428.2015.09.007
    [10]
    陈国良, 张言哲, 汪云甲, 等. WiFi-PDR室内组合定位的无迹卡尔曼滤波算法[J].测绘学报, 2015, 44(12):1314-1321 http://d.old.wanfangdata.com.cn/Periodical/chxb201512003

    Chen Guoliang, Zhang Yanzhe, Wang Yunjia, et al. Unscented Kalman Filter Algorithm for WiFi-PDR Integrated Indoor Positioning[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(12):1314-1321 http://d.old.wanfangdata.com.cn/Periodical/chxb201512003
    [11]
    Leppäkoski H, Collin J, Takala J. Pedestrian Navigation Based on Inertial Sensors, Indoor Map, and WLAN Signals[J]. Journal of Signal Processing Systems, 2013, 71(3):287-296 doi: 10.1007/s11265-012-0711-5
    [12]
    Li F, Zhao C, Ding G, et al. A Reliable and Accurate Indoor Localization Method Using Phone Inertial Sensors[C]. The 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, USA, 2012
    [13]
    Xiao Z, Wen H, Markham A, et al. Lightweight Map Matching for Indoor Localization Using Conditional Random Fields[C]. The 13th International Symposium on Information Processing in Sensor Networks, Berlin, Germany, 2014
    [14]
    宋镖, 程磊, 周明达, 等.基于惯导辅助地磁的手机室内定位系统设计[J].传感技术学报, 2015, 28(8):1249-1254 doi: 10.3969/j.issn.1004-1699.2015.08.025

    Song Biao, Cheng Lei, Zhou Mingda, et al.The Design of Cellphone Indoor Positioning System Based Magnetic Assisted Inertial Navigation Technology[J]. Chinese Journal of Sensors and Actuators, 2015, 28(8):1249-1254 doi: 10.3969/j.issn.1004-1699.2015.08.025
    [15]
    马明, 宋千, 李杨寰, 等.基于地磁辅助的室内行人定位航向校正方法[J].电子与信息学报, 2017, 39(3):647-653 http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201703020

    Ma Ming, Song Qian, Li Yanghuan, et al. Magnetic-Aided Heading Error Calibration Approach for Indoor Pedestrian Positioning[J].Journal of Electronics & Information Technology, 2017, 39(3):647-653 http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201703020
    [16]
    Wang H, Sen S, Elgohary A, et al. No Need to War-Drive: Unsupervised Indoor Localization[C]. The 10th International Conference on Mobile Systems, Applications and Services, Ambleside, The United Kingdom, 2012
    [17]
    周宝定, 李清泉, 毛庆洲, 等.用户行为感知辅助的室内行人定位[J].武汉大学学报·信息科学版, 2014, 39(6):719-723 http://ch.whu.edu.cn/CN/abstract/abstract3006.shtml

    Zhou Baoding, Li Qingquan, Mao Qingzhou, et al. User Activity Awareness Assisted Indoor Pedestrian Localization[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6):719-723 http://ch.whu.edu.cn/CN/abstract/abstract3006.shtml
    [18]
    Chen Z, Zou H, Jiang H, et al. Fusion of WiFi, Smartphone Sensors and Landmarks Using the Kalman Filter for Indoor Localization[J]. Sensors, 2015, 15(1):715-732 doi: 10.3390/s150100715
    [19]
    Constandache I, Choudhury R R, Rhee I. Towards Mobile Phone Localization Without War-Driving[C]. The 29th Conference on Computer Communications, San Diego, USA, 2010
    [20]
    Zhou B, Li Q, Mao Q, et al. ALIMC:Activity Landmark-Based Indoor Mapping via Crowdsour-cing[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5):2774-2785 doi: 10.1109/TITS.2015.2423326
    [21]
    Constandache I, Bao X, Azizyan M, et al. Did You See Bob?: Human Localization Using Mobile Phones[C]. The 16th Annual International Confe-rence on Mobile Computing and Networking, Chicago, USA, 2010
    [22]
    Jun J, Gu Y, Cheng L, et al. Social-Loc: Improving Indoor Localization with Social Sensing[C]. The 11th ACM Conference on Embedded Networked Sensor Systems, Roma, Italy, 2013
    [23]
    Azizyan M, Constandache I, Choudhury R R. Surround-Sense: Mobile Phone Localization via Ambience Fingerprinting[C]. The 15th Annual International Conference on Mobile Computing and Networking, Beijing, China, 2009
    [24]
    Sun Z, Mao X, Tian W, et al. Activity Classification and Dead Reckoning for Pedestrian Navigation with Wearable Sensors[J]. Measurement Science and Technology, 2009, 20(1):015203-1-015203-10 doi: 10.1088/0957-0233/20/1/015203
    [25]
    Kappi J, Syrjarinne J, Saarinen J. MEMS-IMU Based Pedestrian Navigator for Handheld Devices[C]. The 14th International Technical Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City, USA, 2001
    [26]
    Gusenbauer D, Isert C, Krösche J. Self-contained Indoor Positioning on Off-the-Shelf Mobile Devices[C]. The 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Zurich, Switzerland, 2010
    [27]
    Kang W, Nam S, Han Y, et al. Improved Heading Estimation for Smartphone-Based Indoor Positio-ning Systems[C]. The 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Sydney, Australia, 2012
    [28]
    Kang W, Han Y. SmartPDR:Smartphone-Based Pedestrian Dead Reckoning for Indoor Localization[J]. IEEE Sensors Journal, 2015, 15(5):2906-2916 doi: 10.1109/JSEN.2014.2382568
    [29]
    Shoaib M, Bosch S, Incel O, et al. A Survey of Online Activity Recognition Using Mobile Phones[J]. Sensors, 2015, 15(1):2059-2085 doi: 10.3390/s150102059
    [30]
    Rai A, Chintalapudi K K, Padmanabhan V N, et al. Zee: Zero-Effort Crowdsourcing for Indoor Localization[C]. The 18th Annual International Conference on Mobile Computing and Networking, Istanbul, Turkey, 2012
  • Related Articles

    [1]HU Xiangyun, ZHANG Mi, ZHANG Zuxun, LI Xiaokai, DENG Kai, JIANG Huiwei, PANG Shiyan, RAO Youzhuo, GONG Jinqi, FENG Cunjun, ZHAN Yuanzeng, WANG Xingkun. Key Technologies and Applications of EasyFeature—An Intelligent Interpretation System for Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2025, 50(3): 554-561. DOI: 10.13203/j.whugis20240159
    [2]LI Jiayi, HUANG Xin, HU Yuping, ZHANG Zhen, ZHANG Xueting, ZHANG Shulei, FANG Xing. Fusion of Optical Daily and Night-time Light Remote Sensing Images for Collapsed Building Detection: A Case in Turkey Mw 7.8 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1706-1714. DOI: 10.13203/j.whugis20230275
    [3]LÜ Yafei, XIONG Wei, ZHANG Xiaohan. A General Cross-Modal Correlation Learning Method for Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1887-1895. DOI: 10.13203/j.whugis20200213
    [4]GUO Congzhou, LI Ke, LI He, TONG Xiaochong, WANG Xiwen. Deep Convolution Neural Network Method for Remote Sensing Image Quality Level Classification[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1279-1286. DOI: 10.13203/j.whugis20200292
    [5]ZHANG Haiming, WANG Mingchang, CHEN Xueye, WANG Fengyan, YANG Guodong, GAO Su. Remote Sensing Change Detection Based on Deep Belief Networks Optimized by Domain Knowledge[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 762-768. DOI: 10.13203/j.whugis20190471
    [6]SHAO Zhenfeng, SUN Yueming, XI Jiangbo, LI Yan. Intelligent Optimization Learning for Semantic Segmentation of High Spatial Resolution Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 234-241. DOI: 10.13203/j.whugis20200640
    [7]CHEN Hang, LUO Bin. Multi-angle Remote Sensing Images Super-Resolution Reconstruction Using Dynamic Upsampling Filter Deep Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1716-1726. DOI: 10.13203/j.whugis20200651
    [8]JI Shunping, LUO Chong, LIU Jin. A Review of Dense Stereo Image Matching Methods Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 193-202. DOI: 10.13203/j.whugis20200620
    [9]ZHANG Liqiang, LI Yang, HOU Zhengyang, LI Xingang, GENG Hao, WANG Yuebin, LI Jingwen, ZHU Panpan, MEI Jie, JIANG Yanxiao, LI Shuaipeng, XIN Qi, CUI Ying, LIU Suhong. Deep Learning and Remote Sensing Data Analysis[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1857-1864. DOI: 10.13203/j.whugis20200650
    [10]ZHANG Bing. Remotely Sensed Big Data Era and Intelligent Information Extraction[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1861-1871. DOI: 10.13203/j.whugis20180172
  • Cited by

    Periodical cited type(3)

    1. 胡永健,佘惠敏,刘琲贝,陈香全,刘光尧. 利用人脸3DMM重构信息检测深度伪脸视频. 武汉大学学报(信息科学版). 2024(02): 190-196 .
    2. 李晓霖,李刚,张恩琪,顾广华. 行列式点过程采样的文本生成图像方法. 武汉大学学报(信息科学版). 2024(02): 246-255 .
    3. 魏玮,张鑫,朱叶. 基于双重注意力和光流估计的人脸替换方法. 计算机工程与应用. 2023(07): 143-151 .

    Other cited types(6)

Catalog

    Article views (7770) PDF downloads (644) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return