Citation: | ZHANG Bing. Remotely Sensed Big Data Era and Intelligent Information Extraction[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1861-1871. DOI: 10.13203/j.whugis20180172 |
[1] |
张兵.当代遥感科技发展的现状与未来展望[J].中国科学院院刊, 2017, 32(7):774-784 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=672798014
Zhang Bing. Current Status and Future Prospects of Remote Sensing[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(7):774-784 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=672798014
|
[2] |
李德仁, 沈欣, 马洪超, 等.我国高分辨率对地观测系统的商业化运营势在必行[J].武汉大学学报·信息科学版, 2014, 39(4):386-390 http://ch.whu.edu.cn/CN/abstract/abstract2948.shtml
Li Deren, Shen Xin, Ma Hongchao, et al. Commercial Operation of China's High-Resolution Earth Observation System is Imperative[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4):386-390 http://ch.whu.edu.cn/CN/abstract/abstract2948.shtml
|
[3] |
Lyzenga D R. Passive Remote Sensing Techniques for Mapping Water Depth and Bottom Features[J]. Applied Optics, 1978, 17(3):379-383 doi: 10.1364/AO.17.000379
|
[4] |
Strahler A H. The Use of Prior Probabilities in Maximum Likelihood Classification of Remotely Sensed Data[J]. Remote Sensing of Environment, 1980, 10(2):135-163 doi: 10.1016/0034-4257(80)90011-5
|
[5] |
李小文.定量遥感的发展与创新[J].河南大学学报(自然科学版), 2005, 35(4):49-58 doi: 10.3969/j.issn.1003-4978.2005.04.012
Li Xiaowen. Retrospect, Prospect and Innovation in Quantitative Remote Sensing[J]. Journal of Henan University (Natural Sciences), 2005, 35(4):49-58 doi: 10.3969/j.issn.1003-4978.2005.04.012
|
[6] |
Miller J, Hare E W, Wu J. Quantitative Characte-rization of the Vegetation Red Edge Reflectance 1. An Inverted-Gaussian Reflectance Model[J]. International Journal of Remote Sensing, 1990, 11(10):1755-1773 doi: 10.1080/01431169008955128
|
[7] |
Goward S N, Huemmrich K F. Vegetation Canopy PAR Absorptance and the Normalized Difference Vegetation Index:An Assessment Using the SAIL Model[J]. Remote Sensing of Environment, 1992, 39(2):119-140 doi: 10.1016/0034-4257(92)90131-3
|
[8] |
张兵.智能遥感卫星系统[J].遥感学报, 2011, 15(3):415-431 http://d.old.wanfangdata.com.cn/Periodical/wjsjxx201101013
Zhang Bing. Intelligent Remote Sensing Satellite System[J]. Journal of Remote Sensing, 2011, 15(3):415-431 http://d.old.wanfangdata.com.cn/Periodical/wjsjxx201101013
|
[9] |
Ma Y, Wu H, Wang L, et al. Remote Sensing Big Data Computing:Challenges and Opportunities[J]. Future Generation Computer Systems, 2015, 51:47-60 doi: 10.1016/j.future.2014.10.029
|
[10] |
李粉玲, 常庆瑞, 刘佳岐, 等.基于多纹理和支持向量机的ZY-102C星HR数据分类[J].武汉大学学报·信息科学版, 2016, 41(4):455-462 http://ch.whu.edu.cn/CN/abstract/abstract5414.shtml
Li Fenling, Chang Qingrui, Liu Jiaqi, et al. SVM Classification with Multi-texture Data of ZY-102C HR Image[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4):455-462 http://ch.whu.edu.cn/CN/abstract/abstract5414.shtml
|
[11] |
Freund Y, Schapire R E. A Decision-Theoretic Generalization of On-line Learning and an Application to Boosting[J]. Journal of Computer and System Sciences, 1997, 55(1):119-139 doi: 10.1006/jcss.1997.1504
|
[12] |
Hinton G E, Osindero S, Teh Y W. A Fast Lear-ning Algorithm for Deep Belief Nets[J]. Neural Computation, 2006, 18(7):1527-1554 doi: 10.1162/neco.2006.18.7.1527
|
[13] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep Convolutional Neural Networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2):1097-1105 http://dl.acm.org/citation.cfm?id=2999257
|
[14] |
Wang S, Quan D, Liang X, et al. A Deep Learning Framework for Remote Sensing Image Registration[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, https://doi.org/10.1016/j.isprsjprs.2017.12.012
|
[15] |
Guidici D, Clark M L. One-Dimensional Convolutional Neural Network Land-cover Classification of Multi-seasonal Hyperspectral Imagery in the San Francisco Bay Area, California[J]. Remote Sensing, 2017, 9(6):629 doi: 10.3390/rs9060629
|
[16] |
Wang H, Wang Y, Zhang Q, et al. Gated Convolutional Neural Network for Semantic Segmentation in High-Resolution Images[J]. Remote Sensing, 2017, 9(5):446 doi: 10.3390/rs9050446
|
[17] |
Xu Z, Xu X, Wang L, et al. Deformable ConvNet with Aspect Ratio Constrained NMS for Object Detection in Remote Sensing Imagery[J]. Remote Sen-sing, 2017, 9(12):1312 doi: 10.3390/rs9121312
|
[18] |
Zou Z, Shi Z. Random Access Memories:A New Paradigm for Target Detection in High Resolution Aerial Remote Sensing Images[J]. IEEE Transactions on Image Processing, 2018, 27(3):1100-1111 doi: 10.1109/TIP.2017.2773199
|
[19] |
Deng J, Dong W, Socher R, et al. ImageNet: A Large-Scale Hierarchical Image Database[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009
|
[20] |
Xia G S, Bai X, Ding J, et al. DOTA: A Large-Scale Dataset for Object Detection in Aerial Images[OL]. https://arxiv.org/abs/1711.10398v2, 2017
|
[21] |
You Q Z, Luo J B, Jin H L, et al. Building a Large Scale Dataset for Image Emotion Recognition: The Fine Print and the Benchmark[C]. Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, USA, 2016
|
[22] |
John E B, Derek T A, Chee S C. A Comprehensive Survey of Deep Learning in Remote Sensing:Theories, Tools and Challenges for the Community[J]. Journal of Applied Remote Sensing, 2017, 11(4):042609 doi: 10.1117/1.JRS.11.042609
|
[23] |
Karalas K, Tsagkatakis G, Zervakis M, et al. Deep Learning for Multi-label Land Cover Classification[C]. SPIE Remote Sensing, Toulouse, France, 2015
|
[24] |
Liu Z, Wang H, Weng L, et al. Ship Rotated Bounding Box Space for Ship Extraction from High-Resolution Optical Satellite Images with Complex Backgrounds[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 13(8):1074-1078 http://ieeexplore.ieee.org/document/7480356/
|
[25] |
Razakarivony S, Jurie F. Vehicle Detection in Aerial Imagery:A Small Target Detection Benchmark[J]. Journal of Visual Communication and Image Representation, 2015, 34:187-203 http://www.sciencedirect.com/science/article/pii/S1047320315002187
|
[26] |
Zhu H, Chen X, Dai W, et al. Orientation Robust Object Detection in Aerial Images Using Deep Con-volutional Neural Network[C]. IEEE International Conference on Image Processing, Quebec, Canada, 2015
|
[27] |
Yang Y, Newsam S. Bag-of-Visual-Words and Spatial Extensions for Land-use Classification[C]. International Conference on Advances in Geographic Information Systems, San Jose, California, 2010
|
[28] |
Zou Q, Ni L, Zhang T, et al. Deep Learning Based Feature Selection for Remote Sensing Scene Classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11):2321-2325 doi: 10.1109/LGRS.2015.2475299
|
[29] |
Xia G S, Yang W, Delon J, et al. Structural High-Resolution Satellite Image Indexing[C]. ISPRS TC Ⅶ Symposium-100 Years ISPRS, Vienna, Austria, 2010
|
[30] |
Campos-Taberner M, Romero-Soriano A, Gatta C, et al. Processing of Extremely High-Resolution LiDAR and RGB Data:Outcome of the 2015 IEEE GRSS Data Fusion Contest-Part A:2-D Contest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(12):5547-5559 doi: 10.1109/JSTARS.2016.2569162
|
[31] |
Cramer M. The DGPF-Test on Digital Airborne Camera Evaluation-Overview and Test Design[J]. Photogrammetry-Foregrounding-Geoinformation, 2010, 2010(2):73-82 doi: 10.1127/1432-8364/2010/0041
|
[32] |
Lecun Y, Bottou L, Bengio Y, et al. Gradient-Based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324 doi: 10.1109/5.726791
|
[33] |
Liu W, Anguelov D, Erhan D, et al. SSD: Single Shot MultiBox Detector[C]. European Conference on Computer Vision, Springer, Cham, 2016
|
[34] |
Girshick R. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014
|
[35] |
Girshick R. Fast R-CNN[C]. IEEE International Conference on Computer Vision, Santigago, Chile, 2015
|
[36] |
Ren S, He K, Girshick R. Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149 doi: 10.1109/TPAMI.2016.2577031
|
[37] |
He K, Zhang X, Ren S, et al. Pyramid Pooling in Deep Convolutional Networks for Visual Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916 doi: 10.1109/TPAMI.2015.2389824
|
[38] |
Chen X, Xiang S, Liu C, et al. Vehicle Detection in Satellite Images by Parallel Deep Convolutional Neural Networks[C]. Asian Conference on Pattern Recognition, Naha, Japan, 2013
|
[39] |
Chen X, Xiang S, Liu C. Vehicle Detection in Satel-lite Images by Hybrid Deep Convolutional Neural Networks[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10):1797-1801 doi: 10.1109/LGRS.2014.2309695
|
[40] |
Jiang Q, Cao L, Cheng M, et al. Deep Neural Networks-based Vehicle Detection in Satellite Images[C]. International Symposium on Bioelectronics and Bioinformatics, Beijing, China, 2015
|
[41] |
Zhang F, Du B, Zhang L, et al. Weakly Supervised Learning Based on Coupled Convolutional Neural Networks for Aircraft Detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9):5553-5563 doi: 10.1109/TGRS.2016.2569141
|
[42] |
Tang J, Deng C, Huang G, et al. Compressed-Domain Ship Detection on Spaceborne Optical Image Using Deep Neural Network and Extreme Learning Machine[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3):1174-1185 doi: 10.1109/TGRS.2014.2335751
|
[43] |
Cheng G, Zhou P, Han J. Learning Rotation-Inva-riant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):7405-7415 doi: 10.1109/TGRS.2016.2601622
|
[44] |
Radovic M, Adarkwa O, Wang Q. Object Recognition in Aerial Images Using Convolutional Neural Networks[J]. Journal of Imaging, 2017, 3(2):21 doi: 10.3390/jimaging3020021
|
[45] |
Chen Z, Zhang T, Ouyang C. End-to-End Airplane Detection Using Transfer Learning in Remote Sensing Images[J]. Remote Sensing, 2018, 10(1):139 doi: 10.3390/rs10010139
|
[46] |
Long J, Evan S, Trevor D. Fully Convolutional Networks for Semantic Segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, United States, 2015
|
[47] |
Chen L, Papandreou G, Kokkinos I, et al. DeepLab:Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848 doi: 10.1109/TPAMI.2017.2699184
|
[48] |
Zhao H, Shi J, Qi X, et al. Pyramid Scene Parsing Network[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017
|
[49] |
Hu W, Huang Y, Wei L, et al. Deep Convolutional Neural Networks for Hyperspectral Image Classification[J]. Journal of Sensors, 2015, 2015(2):1-12 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0525ad32bdb5ec66dbfadaf3cb6189d9
|
[50] |
Makantasis K, Karantzalos K, Doulamis A, et al. Deep Supervised Learning for Hyperspectral Data Classification Through Convolutional Neural Networks[C]. IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015
|
[51] |
Kussul N, Lavreniuk M, Skakun S, et al. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5):778-782 doi: 10.1109/LGRS.2017.2681128
|
[52] |
Zhao W, Du S. Spectral-Spatial Feature Extraction for Hyperspectral Image Classification:A Dimension Reduction and Deep Learning Approach[J]. IEEE Transactions on Geoscience and Remote Sen-sing, 2016, 54(8):4544-4554 doi: 10.1109/TGRS.2016.2543748
|
[53] |
Santara A, Mani K, Hatwar P, et al. Bass Net:Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9):5293-5301 doi: 10.1109/TGRS.2017.2705073
|
[54] |
Li Y, Zhang H, Shen Q. Spectral-Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network[J]. Remote Sensing, 2016, 18(7):1527-1554 http://adsabs.harvard.edu/abs/2017RemS....9...67L
|
[55] |
Marcos D, Hamid R, Tuia D. Geospatial Correspondence for Multimodal Registration[C]. IEEE International Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016
|
[56] |
He K, Zhang X, Ren S, et al. Deep Residual Lear-ning for Image Recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016
|
[57] |
李小文, 王锦地, 胡宝新, 等.先验知识在遥感反演中的作用[J].中国科学(D辑), 1998, 28(1):67-73 doi: 10.3321/j.issn:1006-9267.1998.01.009
Li Xiaowen, Wang Jindi, Hu Baoxin, et al. Role of Prior Knowledge in Remote Sensing Inversion[J]. Science in China(Series D), 1998, 28(1):67-73 doi: 10.3321/j.issn:1006-9267.1998.01.009
|
[58] |
Liu L, Tang H, Caccetta P, et al. Mapping Affo-restation and Deforestation from 1974 to 2012 Using Landsat Time-Series Stacks in Yulin District, a Key Region of the Three-North Shelter Region, China[J]. Environmental Monitoring and Assessment, 2013, 185(12):9949-9965 doi: 10.1007/s10661-013-3304-2
|
[59] |
Verrelst J, Caicedo J P R, Muñoz-Marí J, et al. SCOPE-Based Emulators for Fast Generation of Synthetic Canopy Reflectance and Sun-Induced Fluo-rescence Spectra[J]. Remote Sensing, 2017, 9(9):927 doi: 10.3390/rs9090927
|
[60] |
Gómez-Dans J L, Lewis P E, Disney M. Efficient Emulation of Radiative Transfer Codes Using Gaussian Processes and Application to Land Surface Parameter Inferences[J]. Remote Sensing, 2016, 8(2):119 doi: 10.3390/rs8020119
|
[61] |
Liu L, Song B, Zhang S, et al. A Novel Principal Component Analysis Method for the Reconstruction of Leaf Reflectance Spectra and Retrieval of Leaf Biochemical Contents[J]. Remote Sensing, 2017, 9(11):1113 doi: 10.3390/rs9111113
|
[62] |
Wang L, Scott K A, Xu L, et al. Sea Ice Concentration Estimation During Melt from Dual-Pol SAR Scenes Using Deep Convolutional Neural Networks:A Case Study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8):4524-4533 doi: 10.1109/TGRS.2016.2543660
|
[63] |
Yu X, Lu H, Liu Q. Role of Prior Knowledge in Remote Sensing Inversion[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 172:188-193 doi: 10.1016/j.chemolab.2017.12.010
|
[64] |
申茜, 朱利, 曹红业.城市黑臭水体遥感监测与筛查研究进展[J].应用生态学报, 2017, 28(10):3433-3439 http://d.old.wanfangdata.com.cn/Periodical/yystxb201710039
Shen Qian, Zhu Li, Cao Hongye. Remote Sensing Monitoring and Screening for Urban Black and Odorous Water Boy:A Review[J]. Chinese Journal of Applied Ecology, 2017, 28(10):3433-3439 http://d.old.wanfangdata.com.cn/Periodical/yystxb201710039
|
[1] | WANG Yanli, DONG Zhipeng, WANG Mi. Ulva polifera Detection from High Resolution Remote Sensing Images Based on Dual-Path Convolutional Neural Networks[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2261-2270. DOI: 10.13203/j.whugis20230159 |
[2] | TANG Xiaochuan, TU Zihan, REN Xuqing, FANG Chengyong, WANG Yu, LIU Xin, FAN Xuanmei. A Multi-modal Deep Neural Network Model for Forested Landslide Detection[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1566-1573. DOI: 10.13203/j.whugis20230099 |
[3] | ZHANG Li, DONG Youfu, LI Ming. ASTER GDEM and SRTM1 Elevation Data Integration with RProp Neural Network[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 777-783. DOI: 10.13203/j.whugis20200679 |
[4] | TAO Liqing, HUANG Guoman, YANG Shucheng, WANG Tongtong, SHENG Huijun, FAN Haitao. A Interferogram Denoising Method Based on Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 559-567. DOI: 10.13203/j.whugis20200589 |
[5] | GUO Congzhou, LI Ke, LI He, TONG Xiaochong, WANG Xiwen. Deep Convolution Neural Network Method for Remote Sensing Image Quality Level Classification[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1279-1286. DOI: 10.13203/j.whugis20200292 |
[6] | REN Jiaxin, LIU Wanzeng, LI Zhilin, LI Ran, ZHAI Xi. Intelligent Detection of "Problematic Map" Using Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 570-577. DOI: 10.13203/j.whugis20190259 |
[7] | ZHAO Xianghong, BAO Jingyang, OUYANG Yongzhong, HUANG Xianyuan, HUANG Chenhu, LU Xiuping. Detecting Outlier of Multibeam Sounding with BP Neural Network[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 518-524. DOI: 10.13203/j.whugis20160336 |
[8] | SUN Deyong, LI Yunmei, WANG Qiao, LE Chengfeng. Remote Sensing Retrieval of CDOM Concentration in Lake Taihu with Hyper-spectral Data and Neural Network Model[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 851-855. |
[9] | WANG Jianmei, QIN Wenzhong. BP Neural Network Classifier Based on Levenberg-Marquardt Algorithm[J]. Geomatics and Information Science of Wuhan University, 2005, 30(10): 928-931. |
[10] | Huang Wenqian. Recognition of Point-shaped Map Symbols with a New Neural Network Model[J]. Geomatics and Information Science of Wuhan University, 1996, 21(1): 46-49. |