SHAO Zhenfeng, SUN Yueming, XI Jiangbo, LI Yan. Intelligent Optimization Learning for Semantic Segmentation of High Spatial Resolution Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 234-241. DOI: 10.13203/j.whugis20200640
Citation: SHAO Zhenfeng, SUN Yueming, XI Jiangbo, LI Yan. Intelligent Optimization Learning for Semantic Segmentation of High Spatial Resolution Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 234-241. DOI: 10.13203/j.whugis20200640

Intelligent Optimization Learning for Semantic Segmentation of High Spatial Resolution Remote Sensing Images

Funds: 

The National Natural Science Foundation of China 41771454

The National Natural Science Foundation of China 61806022

the Jiangxi Province 03 Special Project and 5G Project 20212ABC03A09

the Natural Science Foundation of Inner Mongolia Autonomous Region 2019MS04017

the Scientific Research Project of Colleges and Universities in Inner Mongolia Autonomous Region NJZY20277

the State Key Laboratory of Geo-Information Engineering SKLGIE2018-M-3-4

the Fundamental Research Funds for the Central Universities, Chang'an University 300102269103

the Fundamental Research Funds for the Central Universities, Chang'an University 300102269304

the Fundamental Research Funds for the Central Universities, Chang'an University 300102269205

More Information
  • Author Bio:

    SHAO Zhenfeng, PhD, professor, specializes in research and education of smart city and urban remote sensing. E-mail: shaozhenfeng@whu.edu.cn

  • Corresponding author:

    SUN Yueming, master. E-mail: sunyueming@whu.edu.cn

    XI Jiangbo, PhD, associate professor. E-mail: xijiangbo@chd.edu.cn

  • Received Date: December 15, 2020
  • Published Date: February 04, 2022
  •   Objectives   With the hardware development of remote sensing sensors, the high spatial resolution remote sensing images are widely used. In the actual classification, typical classification algorithms can not achieve high accuracy and efficiency, while deep learning semantic segmentation algorithms can not achieve good generalization.
      Methods   In order to adapt to the large-scale high-resolution images, we design a semantic segmentation model of simulated annealing hyperparameter optimization and depthwise separable convolution based on U-Net. Firstly, the depthwise separable convolutional module is used to extract the features on the baseline. Then, the intelligent optimization learning model based on simulated annealing searches the global optimal solution of hyperparameters. Finally, experiments were carried out in ISPRS2D and Gaofen image dataset (GID).
      Results   Compared to other classification methods, the proposed method achieves the highest classification accuracy in buildings, low vegetation, trees, cars and overall accuracy, and the total accuracy of classification results reaches 86.5% in ISPRS2D. And in the classification results of GID, the accuracies of the proposed method in water, grassland, forest and general classification are all greatly improved. The mean intersection over union of the proposed method is also higher than that of other methods.
      Conclusions   The results demonstrated the higher efficiency, higher accuracy and robustness of the proposed method.
  • [1]
    陈玲, 贾佳, 王海庆. 高分遥感在自然资源调查中的应用综述[J]. 国土资源遥感, 2019, 31(1): 1-7 https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201901001.htm

    Chen Ling, Jia Jia, Wang Haiqing. An Overview of Applying High Resolution Remote Sensing to Natural Resources Survey[J]. Remote Sensing for Land & Resources, 2019, 31(1): 1-7 https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201901001.htm
    [2]
    潘银, 邵振峰, 程涛, 等. 利用深度学习模型进行城市内涝影响分析[J]. 武汉大学学报·信息科学版, 2019, 44(1): 132-138 doi: 10.13203/j.whugis20170217

    Pan Yin, Shao Zhenfeng, Cheng Tao, et al. Analysis of Urban Waterlogging Influence Based on Deep Learning Model[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 132-138 doi: 10.13203/j.whugis20170217
    [3]
    杨泽宇, 张洪艳, 明金, 等. 深度学习在高分辨率遥感影像冬油菜提取中的应用[J]. 测绘通报, 2020(9): 110-113 https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202009024.htm

    Yang Zeyu, Zhang Hongyan, Ming Jin, et al. Extraction of Winter Rapeseed from High-Resolution Remote Sensing Imagery via Deep Learning[J]. Bulletin of Surveying and Mapping, 2020(9): 110-113 https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202009024.htm
    [4]
    贾永红, 周伟伟, 周明婷. 结合规划矢量的高分辨率遥感道路施工进度监测[J]. 测绘地理信息, 2020, 45(2): 106-110 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202002024.htm

    Jia Yonghong, Zhou Weiwei, Zhou Mingting. Road Construction Monitoring Based on Vector Data and High-Resolution Remote Sensing Images[J]. Journal of Geomatics, 2020, 45(2): 106-110 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202002024.htm
    [5]
    唐尧, 王立娟, 马国超, 等. 基于"高分+"的金沙江滑坡灾情监测与应用前景分析[J]. 武汉大学学报·信息科学版, 2019, 44(7): 1082-1092 doi: 10.13203/j.whugis20190048

    Tang Yao, Wang Lijuan, Ma Guochao, et al. Disaster Monitoring and Application Prospect Analysis of the Jinsha River Landslide Based on "Gaofen+" [J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1082-1092 doi: 10.13203/j.whugis20190048
    [6]
    马长辉, 黄登山. 纹理与几何特征信息在高空间分辨率遥感影像分类中的应用[J]. 测绘地理信息, 2019, 44(6): 66-70 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201906017.htm

    Ma Changhui, Huang Dengshan. Application of Texture Features and Geometric Feature Information in High Spatial Resolution Remote Sensing Image Classification[J]. Journal of Geomatics, 2019, 44(6): 66-70 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201906017.htm
    [7]
    朱卫. 基于随机森林算法的街道场景语义分割[D]. 哈尔滨: 哈尔滨理工大学, 2019

    Zhu Wei. Semantic Segmentation of Street Scene Based on Random Forest Algorithm[D]. Harbin: Harbin University of Science and Technology, 2019
    [8]
    亓祥惠. 基于MRF与模糊聚类的图像分割算法研究[D]. 兰州: 兰州理工大学, 2019

    Qi Xianghui. Research on Image Segmentation Algorithm Based on MRF and Fuzzy Clustering[D]. Lanzhou: Lanzhou University of Technology, 2019
    [9]
    Bruzzone L, Carlin L. A Multilevel Context-Based System for Classification of Very High Spatial Resolution Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2587-2600 doi: 10.1109/TGRS.2006.875360
    [10]
    门计林, 刘越岩, 张斌, 等. 多结构卷积神经网络特征级联的高分影像土地利用分类[J]. 武汉大学学报·信息科学版, 2019, 44(12): 1841-1848 doi: 10.13203/j.whugis20180137

    Jilin Men, Liu Yueyan, Zhang Bin, et al. Land Use Classification Based on Multi-Structure Convolution Neural Network Features Cascading[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1841-1848 doi: 10.13203/j.whugis20180137
    [11]
    季顺平, 田思琦, 张驰. 利用全空洞卷积神经元网络进行城市土地覆盖分类与变化检测[J]. 武汉大学学报·信息科学版, 2020, 45(2): 233-241 doi: 10.13203/j.whugis20180481

    Ji Shunping, Tian Siqi, Zhang Chi. Urban Land Cover Classification and Change Detection Using Fully Atrous Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 233-241 doi: 10.13203/j.whugis20180481
    [12]
    贾文翰, 刘越岩, 胡守庚. 基于ResNet34的高分遥感影像草本湿地信息提取[J]. 测绘地理信息, 2021, 46(S1): 97-99 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG2021S1022.htm

    Jia Wenhan, Liu Yueyan, Hu Shougeng. Extraction of Herbaceous Wetland Information from High Resolution Remote Sensing Image Based on ResNet34[J]. Journal of Geomatics, 2021, 46(S1): 97-99 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG2021S1022.htm
    [13]
    陈鹏, 汪本康, 高飒, 等. 利用ResNet进行建筑物倒塌评估[J]. 武汉大学学报·信息科学版, 2020, 45(8): 1179-1184 doi: 10.13203/j.whugis20200135

    Chen Peng, Wang Benkang, Gao Sa, et al. Building Collapse Assessment with Residual Network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1179-1184 doi: 10.13203/j.whugis20200135
    [14]
    Breuel T M. The Effects of Hyperparameters on SGD Training of Neural Networks[EB/OL]. [2015-08-12]. https://arxiv.org/abs/1508.02788
    [15]
    Howard A G, Zhu M L, Chen B, et al. Mobile Nets: Efficient Convolutional Neural Networks for Mobile Vision Applications[EB/OL]. [2017-04-17]. https://arxiv.org/abs/1704.04861
    [16]
    Kang Z, Qu Z Y. Application of BP Neural Network Optimized by Genetic Simulated Annealing Algorithm to Prediction of Air Quality Index in Lanzhou[C]//20172nd IEEE International Conference on Computational Intelligence and Applications (ICCIA), Beijing, China, 2017
    [17]
    Tong X Y, Xia G S, Lu Q K, et al. Land-Cover Classification with High-Resolution Remote Sensing Images Using Transferable Deep Models[J]. Remote Sensing of Environment, 2020, 237: 111322 doi: 10.1016/j.rse.2019.111322
    [18]
    Gerke M. Use of the Stair Vision Library Within the ISPRS2D Semantic Labeling Benchmark (Vaihingen)[EB/OL]. [2014-12-28]http://www2.isprs.org/vaihingen-2d-semantic-labeling-contest.html
    [19]
    Pan X R, Gao L R, Marinoni A, et al. Semantic Labeling of High Resolution Aerial Imagery and LiDAR Data with Fine Segmentation Network[J]. Remote Sensing, 2018, 10(5): 743 doi: 10.3390/rs10050743
    [20]
    Dong R S, Pan X Q, Li F Y. Dense U-Net-Based Semantic Segmentation of Small Objects in Urban Remote Sensing Images[J]. IEEE Access, 2019, 7: 65347-65356 doi: 10.1109/ACCESS.2019.2917952
    [21]
    Xiong D H, He C, Liu X L, et al. An End-to-End Bayesian Segmentation Network Based on a Generative Adversarial Network for Remote Sensing Images[J]. Remote Sensing, 2020, 12(2): 216 doi: 10.3390/rs12020216
  • Cited by

    Periodical cited type(37)

    1. 罗斌,刘文豪,吴进,韩嘉福,吴文周,李洪省. 从地理信息系统到地理智能体. 地球信息科学学报. 2025(01): 83-99 .
    2. 王培晓,张恒才,张岩,程诗奋,张彤,陆锋. 地理空间智能预测研究进展与发展趋势. 地球信息科学学报. 2025(01): 60-82 .
    3. 王行风,陈国良. 地理知识图谱辅助的煤矿区生态损伤智慧识别研究. 地球信息科学学报. 2025(02): 367-380 .
    4. 张岸,朱俊锴. 新一代人工智能驱动下地图学研究的机遇与挑战. 地球信息科学学报. 2024(01): 35-45 .
    5. 刘康. 人类移动数据生成方法:研究进展与趋势探讨. 地球信息科学学报. 2024(04): 831-847 .
    6. 闾国年,袁林旺,陈旻,张雪英,周良辰,俞肇元,罗文,乐松山,吴明光. 地理信息学科发展的思考. 地球信息科学学报. 2024(04): 767-778 .
    7. 吴田军,骆剑承,李曼嘉,张静,赵馨,胡晓东,左进,闵帆,王玲玉,黄启厅. 地理时空数字化底座理论框架构建与应用实践. 地球信息科学学报. 2024(04): 799-830 .
    8. 王宇君,郭健,徐立,李宗明,李可欣. 利用深度森林进行船舶类型分类识别. 测绘科学技术学报. 2024(04): 425-432+440 .
    9. 邬伦,侯远樵,刘瑜. 大数据的6种地理学应用范式. 测绘学报. 2024(08): 1465-1479 .
    10. 石岩,王达,邓敏,杨学习. 时空异常探测:从数据驱动到知识驱动的内涵转变与实现路径. 测绘学报. 2024(08): 1493-1504 .
    11. 杨开先,甄峰. 地理学视角下城市空间智能化研究进展与思考. 地理科学. 2024(07): 1166-1177 .
    12. 李洁,王继周,毛曦,路文娟. 基于语义编码的自然语言时空问句语义理解. 测绘科学. 2024(11): 197-206 .
    13. 刘瑜,汪珂丽,邢潇月,郭浩,张维昱,罗琴瑶,高松,黄舟,李海峰,李新,王姣娥,王劲峰,朱递. 地理分析中的空间效应. 地理学报. 2023(03): 517-531 .
    14. 杨颖. 人工智能在地图学中的应用展望. 电子技术. 2023(03): 162-163 .
    15. 诸云强,孙凯,胡修棉,闾海荣,王新兵,杨杰,王曙,李威蓉,宋佳,苏娜,牟兴林. 大规模地球科学知识图谱构建与共享应用框架研究与实践. 地球信息科学学报. 2023(06): 1215-1227 .
    16. 陆锋,诸云强,张雪英. 时空知识图谱研究进展与展望. 地球信息科学学报. 2023(06): 1091-1105 .
    17. 诸云强,孙凯,李威蓉,王曙,宋佳,程全英,杨杰,牟兴林,耿文广,代小亮. 地球科学知识图谱比较分析与启示:构建方法与内容视角. 高校地质学报. 2023(03): 382-394 .
    18. 张彤,刘仁宇,王培晓,高楚林,刘杰,王望舒. 感知物理先验的机器学习及其在地理空间智能中的研究前景. 地球信息科学学报. 2023(07): 1297-1311 .
    19. 丁建丽,葛翔宇,王瑾杰,赵爽,丁玥,秦少峰,朱传梅,马雯. 地理学领域的人工智能应用与思考. 新疆大学学报(自然科学版)(中英文). 2023(04): 385-397 .
    20. 付偲,李超岭,张海燕,刘畅,李丰丹. 基于多模态特征融合的地质体识别方法. 地球科学. 2023(10): 3743-3752 .
    21. Yunqiang ZHU,Kai SUN,Shu WANG,Chenghu ZHOU,Feng LU,Hairong LV,Qinjun QIU,Xinbing WANG,Yanmin QI. An adaptive representation model for geoscience knowledge graphs considering complex spatiotemporal features and relationships. Science China Earth Sciences. 2023(11): 2563-2578 .
    22. 诸云强,孙凯,王曙,周成虎,陆锋,闾海荣,邱芹军,王新兵,祁彦民. 顾及复杂时空特征及关系的地球科学知识图谱自适应表达模型. 中国科学:地球科学. 2023(11): 2609-2622 .
    23. 陈杰,邓敏,刘启亮,石岩,刘慧敏. 大数据智能时代地理信息科学专业人才培养方案的提质与实践. 测绘通报. 2023(11): 163-167 .
    24. 黄露,侯爱羚. 基于省市联动的基础测绘数据智能更新技术. 地理空间信息. 2023(12): 83-85 .
    25. 许磊,李琪,陶雲,余红楚,杜文英,陈泽强,陈能成. 数据驱动的短临降水预报可靠性分析技术体系研究. 时空信息学报. 2023(04): 508-517 .
    26. 贺智,陈逸敏,刘凯. AI时代地理信息科学一流本科专业课程建设探索. 测绘通报. 2023(S2): 60-63 .
    27. 杨学习,邓敏,刘瑜. 社会感知与地理空间智能的研究动态与展望——“社会感知与地理空间智能”专栏导读. 地理与地理信息科学. 2022(01): 1-4 .
    28. 李双成,张文彬,陈立英,梁泽,张雅娟,王铮. 孪生空间及其应用——兼论地理研究空间的重构. 地理学报. 2022(03): 507-517 .
    29. 孔宇,甄峰,张姗琪. 智能技术影响下的城市空间研究进展与思考. 地理科学进展. 2022(06): 1068-1081 .
    30. 刘瑜,郭浩,李海峰,董卫华,裴韬. 从地理规律到地理空间人工智能. 测绘学报. 2022(06): 1062-1069 .
    31. 涂伟,夏吉喆,汪驰升,陆旻,乐阳. 面向智慧城市的空间计算与分析类课程教学模式探索与实践. 测绘地理信息. 2022(S1): 14-17 .
    32. 高嘉良,陆锋,彭澎,徐阳. 基于网络文本迁移学习的旅游知识图谱构建. 武汉大学学报(信息科学版). 2022(08): 1191-1200+1219 .
    33. 武芳,杜佳威,钱海忠,翟仁健. 地图综合智能化研究的发展与思考. 武汉大学学报(信息科学版). 2022(10): 1675-1687 .
    34. 兰锐,陈慧玲,童杨辉. “自然资源大脑”构建关键技术及应用设想. 自然资源信息化. 2022(05): 99-105 .
    35. 慎利,徐柱,李志林,刘万增,崔秉良. 从地理信息服务到地理知识服务:基本问题与发展路径. 测绘学报. 2021(09): 1194-1202 .
    36. 张永生,张振超,童晓冲,纪松,于英,赖广陵. 地理空间智能研究进展和面临的若干挑战. 测绘学报. 2021(09): 1137-1146 .
    37. 艾廷华. 深度学习赋能地图制图的若干思考. 测绘学报. 2021(09): 1170-1182 .

    Other cited types(13)

Catalog

    Article views PDF downloads Cited by(50)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return