WANG Chunyan, LIU Jiaxin, XU Aigong, WANG Yu, SUI Xin. A New Method of Fuzzy Supervised Classification of High Resolution Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 922-929. DOI: 10.13203/j.whugis20150726
Citation: WANG Chunyan, LIU Jiaxin, XU Aigong, WANG Yu, SUI Xin. A New Method of Fuzzy Supervised Classification of High Resolution Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 922-929. DOI: 10.13203/j.whugis20150726

A New Method of Fuzzy Supervised Classification of High Resolution Remote Sensing Image

Funds: 

The General Science Research Project of Education Bureau of Liaoning Province LJYL036

The General Science Research Project of Education Bureau of Liaoning Province LJYL012

the National Natural Science Foundation of China 41271435

Liaoning College Students' Innovation and Entrepreneurship Training Program Project 201710147000187

More Information
  • Author Bio:

    WANG Chunyan, PhD, specializes in the remotely sensed images modelling and analysis. E-mail: wcy0211@126.com

  • Corresponding author:

    XU Aigong, PhD, professor. E-mail: xu_ag@126.com

  • Received Date: May 05, 2016
  • Published Date: June 04, 2018
  • This paper presents a supervised image classification method based on fuzzy membership function to solve incorrect classification of high resolution remote sensing image, which caused by highlight detail information, the uncertainly of the pixels classification derived from the increase of the differences between pixels in the homogenous region, the uncertainly of classification decision and so on. First, Gaussian model is used to characterize the uncertainly of the membership of pixels; then the model is extended to build the image fuzzy membership function to define the uncertainly of the homogenous regions. To segment the image, the objective function is built by linear function of neural network, which the fuzzy membership functions and the membership degrees of the original fuzzy membership functions as input values. The proposed method is compared with the classification methods tested on the WorldView-2 panchromatic synthetic and real images. Through the qualitative and quantitative experiments, it can be found that the proposed method has better classification accuracy.
  • [1]
    Bruzzone L, Carlin L. A Multilevel Context-based System for Classification of Very High Spatial Re-solution Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9):2587-2600 https://www.deepdyve.com/lp/elsevier/qualitative-satellite-image-analysis-mapping-spatial-distribution-of-LPZkqE0g2x
    [2]
    Gath I, Geva A B. Unsupervised Optimal Fuzzy Clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7):773-780 http://cn.bing.com/academic/profile?id=6980625f9c7bd2be5e88ee9100f0b0a8&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    Ahmed M N, Yamany S M, Mohamed N A, et al. A Modified Fuzzy C-means Algorithm for Bias Field Estimation and Segmentation of MRI Data[J]. IEEE Transactions on Medical Imaging, 2002, 21(3):193-199 doi: 10.1109/42.996338
    [4]
    Chen S, Zhang D. Robust Image Segmentation Using FCM with Spatial Constraints Based on New Kernel-induced Distance Measure[J]. IEEE Tran-sactions on Cybernetics Systems, Man and Cyberne-tics, 2004, 34(4):1907-1916 doi: 10.1109/TSMCB.2004.831165
    [5]
    Szilagyi L, Benyo Z, Szilagyi S M, et al. MR Brain Image Segmentation Using an Enhanced Fuzzy C-means Algorithm[C]. Proceedings of the 25th Annual International Conference of the IEEE Enginee-ring in Medicine and Biology Society, Cancun, Mexico, 2003
    [6]
    王海军, 邓羽, 王丽, 等.基于数据场的C均值聚类方法研究[J].武汉大学学报·信息科学版, 2009, 34(5):626-629 http://ch.whu.edu.cn/CN/abstract/abstract1268.shtml

    Wang Haijun, Deng Yu, Wang Li, et al. A C-means Algorithm Based on Data Field[J]. Geoma-tics and Information Science of Wuhan University, 2009, 34(5):626-629 http://ch.whu.edu.cn/CN/abstract/abstract1268.shtml
    [7]
    Chatzisand S P, Varvarigon T A. A Fuzzy Clustering Approach Toward Hidden Markov Random Field Models for Enhanced Spatially Constrained Image Segmentation[J]. IEEE Transactions on Fuzzy System, 2008, 16(5):1351-1361 doi: 10.1109/TFUZZ.2008.2005008
    [8]
    Sarkar A, Banerjee A, Banerjee A, et al. Land Co-ver Classification in MRF Context Using Dempster-Shafer Fusion for Multisensory Imagery[J]. IEEE Transactions on Image Processing, 2005, 14(5):634-645 doi: 10.1109/TIP.2005.846032
    [9]
    Karmakar S, Mujumdar P P. Grey Fuzzy Optimization Model for Water Quality Management of a Rriver System[J]. Advances in Water Resources, 2006, 29(7):1088-1105 http://cn.bing.com/academic/profile?id=82b2d8ce3535479c2442637b2547eb20&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    Oberthur T, Dobermann A, Aylward M. Using Auxiliary Information to Adjust Fuzzy Membership Functions for Improved Mapping of Soil Qualities[J]. Geographical Information Science, 2000, 14(5):431-454 doi: 10.1080/13658810050057588
    [11]
    Mauro A E, Maros A E, Sinito A M. An Interval Fuzzy Model for Magnetic Monitoring:Estimation of a Pollution Index[J]. Environmental Earth Sciences, 2012, 66(5):1477-1485 doi: 10.1007/s12665-011-1387-z
    [12]
    Janin S, Khare M. Construction of Fuzzy Membership Functions for Urban Vehicular Exhaust Emissions Modeling[J]. Environmental Monitoring and Assessment, 2010, 167(8):1-4 http://cn.bing.com/academic/profile?id=ed23b69292d44479d6265a332fa87b96&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    Yang C L, Kuo R J, Chien C H, et al. Non-dominated Sorting Genetic Algorithm Using Fuzzy Membership Chromosome for Categorical Data Clustering[J]. Applied Soft Computing, 2015, 30(5):113-122 http://cn.bing.com/academic/profile?id=43bbb631e516c8875f5682d27bcf6089&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    Tang W M. Fuzzy SVM with a New Fuzzy Membership Function to Solve the Two-Class Problems[J]. Neural Process Letters, 2011, 34(3):209-219 doi: 10.1007/s11063-011-9192-y
    [15]
    Chen M S, Wang S W. Fuzzy Clustering Analysis for Optimizing Fuzzy Membership Functions[J]. Fuzzy Sets and Systems, 1999, 103(2):239-254 doi: 10.1016/S0165-0114(98)00224-3
    [16]
    Kaur D, Mukherjee S, Basu K. Solution of a Multi-Objective and Multi-Index Real-Life Transportation Problem Using Different Fuzzy Membership Functions[J]. Journal of Optimization Theory and Applications, 2015, 164(2):666-678 doi: 10.1007/s10957-014-0579-6
    [17]
    Kumar A, Kaur M. A New Method for Solving Single and Multi-Objective Fuzzy Minimum Cost Flow Problems with Different Membership Functions[J]. Indian Academy of Sciences, 2014, 39(1):189-206 http://cn.bing.com/academic/profile?id=9d13b8ce84af93f504f7d37a90911b68&encoded=0&v=paper_preview&mkt=zh-cn
    [18]
    Mccloskey A, Mcivol R, Maguire L. A User-centred Corporate Acquisition System:A Dynamic Fuzzy Membership Functions Approach[J]. Decision Support Systems, 2006, 42(1):162-185 https://www.deepdyve.com/lp/elsevier/a-user-centred-corporate-acquisition-system-a-dynamic-fuzzy-membership-Zb21XSpy43
    [19]
    Qiu F, Jensen J R. Opening the Black Box of Neural Networks for Remote Sensing Image Classification[J]. International Journal of Remote Sensing, 2004, 25(9):1749-1768 http://cn.bing.com/academic/profile?id=65297852c9fcc3de64101413e0538b94&encoded=0&v=paper_preview&mkt=zh-cn
    [20]
    Liu J, Wang W, Dou X. Multiple Model Internal Model Control Based on Fuzzy Membership Function[C]. 2008 IEEE International Conference on Automation & Logistics, Qingdao, China, 2008
  • Related Articles

    [1]WU Jiaqi, JIANG Yonghua, SHEN Xin, LI Beibei, PAN Shenlin. Satellite Video Motion Detection Supported by Decision Tree Weak Classification[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1182-1190. DOI: 10.13203/j.whugis20180094
    [2]FU Zisheng, LI Qiuping, LIU Lin, ZHOU Suhong. Identification of Urban Network Congested Segments Using GPS Trajectories Double-Clustering Method[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1264-1270. DOI: 10.13203/j.whugis20150036
    [3]DENG Min, CHEN Ti, YANG Wentao. A New Method of Modeling Spatio-temporal Sequence by Considering Spatial Scale Characteristics[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1625-1632. DOI: 10.13203/j.whugis20130842
    [4]FU Zhongliang, LIU Siyuan. MR-tree with Voronoi Diagrams for Parallel Spatial Queries[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1490-1494.
    [5]HE Chu, LIU Ming, XU Lianyu, LIU Longzhu. A Hierarchical Classification Method Based on Feature Selection and Adaptive Decision Tree for SAR Image[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 46-49.
    [6]ZHANG Lu, GAO Zhihong, LIAO Mingsheng, LI Xinyan. Estimating Urban Impervious Surface Percentage with Multi-source Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1212-1216.
    [7]HAN Tao, XU Xiaotao, XIE Yaowen. Automated Construction and Classification of Decision Tree Classifier Based on Single-Temporal MODIS Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 191-194.
    [8]LIAO Mingsheng, JIANG Liming, LIN Hui, YANG Limin. Estimating Urban Impervious Surface Percent Using Boosting as a Refinement of CART Analysis[J]. Geomatics and Information Science of Wuhan University, 2007, 32(12): 1099-1102.
    [9]YU Xin, ZHENG Zhaobao, YE Zhiwei, TIAN Liqiao. Texture Classification Based on Tree Augmented Naive Bayes Classifier[J]. Geomatics and Information Science of Wuhan University, 2007, 32(4): 287-289.
    [10]GUO Jing, LIU Guangjun, DONG Xurong, GUO Lei. 2-Level R-tree Spatial Index Based on Spatial Grids and Hilbert R-tree[J]. Geomatics and Information Science of Wuhan University, 2005, 30(12): 1084-1088.
  • Cited by

    Periodical cited type(13)

    1. 陈月,王磊,池深深,王羽,戚鑫鑫,朱尚军. 基于SBAS-InSAR和CNN-GRU模型的采动村庄地表沉降监测预计. 金属矿山. 2025(02): 138-144 .
    2. 何毅,姚圣,陈毅,闫浩文,张立峰. ConvLSTM神经网络的时序InSAR地面沉降时空预测. 武汉大学学报(信息科学版). 2025(03): 483-496 .
    3. 倪尔瑞,张建新,邱明剑,权力奥,朱晓峻. 基于SBAS-InSAR技术的淮北市地表沉降监测分析. 北京测绘. 2024(03): 312-317 .
    4. 吴启琛,于瑞鹏,王丽,赵乙泽,范开放. 利用Sentinel-1的山东枣庄高新区地面沉降监测与分析. 地理空间信息. 2024(06): 80-83 .
    5. 杨芳,丁仁军,李勇发. 基于SBAS-InSAR技术的金沙江流域典型滑坡时空演化特征分析. 测绘通报. 2024(11): 102-107 .
    6. 祝杰,李瑜,师宏波,刘洋洋,韩宇飞,邵银星,王坦. 鹤岗煤矿区地面沉降时空特征InSAR时间序列监测研究. 中国地震. 2023(03): 596-608 .
    7. 柴龙飞,魏路,张震. 基于SBAS-InSAR的安徽省宿州市埇桥区2019—2022年地面沉降监测及影响因素分析研究. 安徽地质. 2023(04): 348-352 .
    8. 祝杰,韩宇飞,王坦,李瑜,王阅兵,师宏波,刘洋洋,樊俊屹,邵银星. 2017年九寨沟M_S7.0地震同震地表三维形变场解算研究. 中国地震. 2022(02): 348-359 .
    9. 吴毅彬,葛红斌,刘光庆,刘海旺. 基于MT-InSAR技术的厦门新机场填海区沉降监测. 工程勘察. 2021(02): 57-61 .
    10. 翟振起. 基于InSAR沉降监测技术的城市供水管线安全监测系统开发. 水利科学与寒区工程. 2021(01): 103-106 .
    11. 廖明生,王茹,杨梦诗,王楠,秦晓琼,杨天亮. 城市目标动态监测中的时序InSAR分析方法及应用. 雷达学报. 2020(03): 409-424 .
    12. 熊寻安,王明洲,龚春龙. MT-InSAR技术监测水库土石坝表面变形研究. 测绘地理信息. 2019(05): 78-81 .
    13. 王茹,杨天亮,杨梦诗,廖明生,林金鑫,张路. PS-InSAR技术对上海高架路的沉降监测与归因分析. 武汉大学学报(信息科学版). 2018(12): 2050-2057 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return