Citation: | WANG Chunyan, LIU Jiaxin, XU Aigong, WANG Yu, SUI Xin. A New Method of Fuzzy Supervised Classification of High Resolution Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 922-929. DOI: 10.13203/j.whugis20150726 |
[1] |
Bruzzone L, Carlin L. A Multilevel Context-based System for Classification of Very High Spatial Re-solution Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9):2587-2600 https://www.deepdyve.com/lp/elsevier/qualitative-satellite-image-analysis-mapping-spatial-distribution-of-LPZkqE0g2x
|
[2] |
Gath I, Geva A B. Unsupervised Optimal Fuzzy Clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7):773-780 http://cn.bing.com/academic/profile?id=6980625f9c7bd2be5e88ee9100f0b0a8&encoded=0&v=paper_preview&mkt=zh-cn
|
[3] |
Ahmed M N, Yamany S M, Mohamed N A, et al. A Modified Fuzzy C-means Algorithm for Bias Field Estimation and Segmentation of MRI Data[J]. IEEE Transactions on Medical Imaging, 2002, 21(3):193-199 doi: 10.1109/42.996338
|
[4] |
Chen S, Zhang D. Robust Image Segmentation Using FCM with Spatial Constraints Based on New Kernel-induced Distance Measure[J]. IEEE Tran-sactions on Cybernetics Systems, Man and Cyberne-tics, 2004, 34(4):1907-1916 doi: 10.1109/TSMCB.2004.831165
|
[5] |
Szilagyi L, Benyo Z, Szilagyi S M, et al. MR Brain Image Segmentation Using an Enhanced Fuzzy C-means Algorithm[C]. Proceedings of the 25th Annual International Conference of the IEEE Enginee-ring in Medicine and Biology Society, Cancun, Mexico, 2003
|
[6] |
王海军, 邓羽, 王丽, 等.基于数据场的C均值聚类方法研究[J].武汉大学学报·信息科学版, 2009, 34(5):626-629 http://ch.whu.edu.cn/CN/abstract/abstract1268.shtml
Wang Haijun, Deng Yu, Wang Li, et al. A C-means Algorithm Based on Data Field[J]. Geoma-tics and Information Science of Wuhan University, 2009, 34(5):626-629 http://ch.whu.edu.cn/CN/abstract/abstract1268.shtml
|
[7] |
Chatzisand S P, Varvarigon T A. A Fuzzy Clustering Approach Toward Hidden Markov Random Field Models for Enhanced Spatially Constrained Image Segmentation[J]. IEEE Transactions on Fuzzy System, 2008, 16(5):1351-1361 doi: 10.1109/TFUZZ.2008.2005008
|
[8] |
Sarkar A, Banerjee A, Banerjee A, et al. Land Co-ver Classification in MRF Context Using Dempster-Shafer Fusion for Multisensory Imagery[J]. IEEE Transactions on Image Processing, 2005, 14(5):634-645 doi: 10.1109/TIP.2005.846032
|
[9] |
Karmakar S, Mujumdar P P. Grey Fuzzy Optimization Model for Water Quality Management of a Rriver System[J]. Advances in Water Resources, 2006, 29(7):1088-1105 http://cn.bing.com/academic/profile?id=82b2d8ce3535479c2442637b2547eb20&encoded=0&v=paper_preview&mkt=zh-cn
|
[10] |
Oberthur T, Dobermann A, Aylward M. Using Auxiliary Information to Adjust Fuzzy Membership Functions for Improved Mapping of Soil Qualities[J]. Geographical Information Science, 2000, 14(5):431-454 doi: 10.1080/13658810050057588
|
[11] |
Mauro A E, Maros A E, Sinito A M. An Interval Fuzzy Model for Magnetic Monitoring:Estimation of a Pollution Index[J]. Environmental Earth Sciences, 2012, 66(5):1477-1485 doi: 10.1007/s12665-011-1387-z
|
[12] |
Janin S, Khare M. Construction of Fuzzy Membership Functions for Urban Vehicular Exhaust Emissions Modeling[J]. Environmental Monitoring and Assessment, 2010, 167(8):1-4 http://cn.bing.com/academic/profile?id=ed23b69292d44479d6265a332fa87b96&encoded=0&v=paper_preview&mkt=zh-cn
|
[13] |
Yang C L, Kuo R J, Chien C H, et al. Non-dominated Sorting Genetic Algorithm Using Fuzzy Membership Chromosome for Categorical Data Clustering[J]. Applied Soft Computing, 2015, 30(5):113-122 http://cn.bing.com/academic/profile?id=43bbb631e516c8875f5682d27bcf6089&encoded=0&v=paper_preview&mkt=zh-cn
|
[14] |
Tang W M. Fuzzy SVM with a New Fuzzy Membership Function to Solve the Two-Class Problems[J]. Neural Process Letters, 2011, 34(3):209-219 doi: 10.1007/s11063-011-9192-y
|
[15] |
Chen M S, Wang S W. Fuzzy Clustering Analysis for Optimizing Fuzzy Membership Functions[J]. Fuzzy Sets and Systems, 1999, 103(2):239-254 doi: 10.1016/S0165-0114(98)00224-3
|
[16] |
Kaur D, Mukherjee S, Basu K. Solution of a Multi-Objective and Multi-Index Real-Life Transportation Problem Using Different Fuzzy Membership Functions[J]. Journal of Optimization Theory and Applications, 2015, 164(2):666-678 doi: 10.1007/s10957-014-0579-6
|
[17] |
Kumar A, Kaur M. A New Method for Solving Single and Multi-Objective Fuzzy Minimum Cost Flow Problems with Different Membership Functions[J]. Indian Academy of Sciences, 2014, 39(1):189-206 http://cn.bing.com/academic/profile?id=9d13b8ce84af93f504f7d37a90911b68&encoded=0&v=paper_preview&mkt=zh-cn
|
[18] |
Mccloskey A, Mcivol R, Maguire L. A User-centred Corporate Acquisition System:A Dynamic Fuzzy Membership Functions Approach[J]. Decision Support Systems, 2006, 42(1):162-185 https://www.deepdyve.com/lp/elsevier/a-user-centred-corporate-acquisition-system-a-dynamic-fuzzy-membership-Zb21XSpy43
|
[19] |
Qiu F, Jensen J R. Opening the Black Box of Neural Networks for Remote Sensing Image Classification[J]. International Journal of Remote Sensing, 2004, 25(9):1749-1768 http://cn.bing.com/academic/profile?id=65297852c9fcc3de64101413e0538b94&encoded=0&v=paper_preview&mkt=zh-cn
|
[20] |
Liu J, Wang W, Dou X. Multiple Model Internal Model Control Based on Fuzzy Membership Function[C]. 2008 IEEE International Conference on Automation & Logistics, Qingdao, China, 2008
|
[1] | WU Jiaqi, JIANG Yonghua, SHEN Xin, LI Beibei, PAN Shenlin. Satellite Video Motion Detection Supported by Decision Tree Weak Classification[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1182-1190. DOI: 10.13203/j.whugis20180094 |
[2] | FU Zisheng, LI Qiuping, LIU Lin, ZHOU Suhong. Identification of Urban Network Congested Segments Using GPS Trajectories Double-Clustering Method[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1264-1270. DOI: 10.13203/j.whugis20150036 |
[3] | DENG Min, CHEN Ti, YANG Wentao. A New Method of Modeling Spatio-temporal Sequence by Considering Spatial Scale Characteristics[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1625-1632. DOI: 10.13203/j.whugis20130842 |
[4] | FU Zhongliang, LIU Siyuan. MR-tree with Voronoi Diagrams for Parallel Spatial Queries[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1490-1494. |
[5] | HE Chu, LIU Ming, XU Lianyu, LIU Longzhu. A Hierarchical Classification Method Based on Feature Selection and Adaptive Decision Tree for SAR Image[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 46-49. |
[6] | ZHANG Lu, GAO Zhihong, LIAO Mingsheng, LI Xinyan. Estimating Urban Impervious Surface Percentage with Multi-source Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1212-1216. |
[7] | HAN Tao, XU Xiaotao, XIE Yaowen. Automated Construction and Classification of Decision Tree Classifier Based on Single-Temporal MODIS Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 191-194. |
[8] | LIAO Mingsheng, JIANG Liming, LIN Hui, YANG Limin. Estimating Urban Impervious Surface Percent Using Boosting as a Refinement of CART Analysis[J]. Geomatics and Information Science of Wuhan University, 2007, 32(12): 1099-1102. |
[9] | YU Xin, ZHENG Zhaobao, YE Zhiwei, TIAN Liqiao. Texture Classification Based on Tree Augmented Naive Bayes Classifier[J]. Geomatics and Information Science of Wuhan University, 2007, 32(4): 287-289. |
[10] | GUO Jing, LIU Guangjun, DONG Xurong, GUO Lei. 2-Level R-tree Spatial Index Based on Spatial Grids and Hilbert R-tree[J]. Geomatics and Information Science of Wuhan University, 2005, 30(12): 1084-1088. |