CHEN Chuanfa, YAN Changqing, LIU Fengying, ZHAO Na, LIU Guolin. A Total Error-Based Interpolation Method for DEM Generation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 739-744. DOI: 10.13203/j.whugis20150695
Citation: CHEN Chuanfa, YAN Changqing, LIU Fengying, ZHAO Na, LIU Guolin. A Total Error-Based Interpolation Method for DEM Generation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 739-744. DOI: 10.13203/j.whugis20150695

A Total Error-Based Interpolation Method for DEM Generation

Funds: 

The National Natural Science Foundation of China 41371367

The National Natural Science Foundation of China 41101433

SDUST Research Fund 

Joint Innovative Center for Safe and Effective Mining Technology and Equipment of Coal Resources of Shandong Province 

Special Project Fund of Taishan Scholars of Shandong Province 

More Information
  • Author Bio:

    CHEN Chuanfa, PhD, professor. E-mail: chencf@lreis.ac.cn

  • Received Date: May 09, 2016
  • Published Date: May 04, 2018
  • Motivated by the idea of total least squared method, a total error-based multiquadric method (MQ-T) has been developed to decrease the effect of both horizontal and vertical errors inherent in sample points on surface modeling. Two examples including a numerical test and a real-world example were, respectively, employed to test the robustness of MQ-T to sample errors. The numerical test indicates that when sample points are only subject to vertical errors, MQ-T has a similar performance to MQ. When sample points are subject to horizontal errors, MQ-T is more accurate than MQ. In the real-world example, MQ-T was used to construct DEMs with sample points collected by a total station instrument, and its accuracy was compared with those of classical interpolation methods including inverse distance weighting, ordinary Kriging (Kriging) and ANUDEM. Results indicate that with the decrease of sample density, the interpolation accuracies of all methods become lower. Regardless of sample density, MQ-T is always more accurate than the other methods. Yet, compared with Kriging, MQ-T has a peak-cutting problem.
  • [1]
    Chen C F, Yue T X. A Method of DEM Construction and Related Error Analysis[J]. Computers & Geosciences, 2010, 36(6):717-725 http://www.isprs.org/proceedings/XXXVII/congress/5_pdf/58.pdf
    [2]
    Hutchinson M F, Gallant J C. Digital elevation models and representation of terrain shape[M]//Wilson J P, Gallant J C. Terrain Analysis: Principles and Applications. New York: Wiley, 2000
    [3]
    Aguilar F J, Aguilar M A, Agüera F, et al. The Accuracy of Grid Digital Elevation Models Linearly Constructed from Scattered Sample Data[J]. International Journal of Geographical Information Science, 2006, 20(2):169-192 doi: 10.1080/13658810500399670
    [4]
    Fisher P F, Tate N J. Causes and Consequences of Error in Digital Elevation Models[J]. Progress in Physical Geography, 2006, 30(4):467-489 doi: 10.1191/0309133306pp492ra
    [5]
    Reinoso J F. A Priori Horizontal Displacement (HD) Estimation of Hydrological Features when Versioned DEMs are Used[J]. Journal of Hydrology, 2010, 384(1/2):130-141 https://www.sciencedirect.com/science/article/pii/S0022169410000405
    [6]
    Vosselman G. Automated Planimetric Quality Control in High Accuracy Airborne Laser Scanning Surveys[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 74:90-100 doi: 10.1016/j.isprsjprs.2012.09.002
    [7]
    Billings S D, Newsam G N, Beatson R K. Smooth Fitting of Geophysical Data Using Continuous Global Surfaces[J]. Geophysics, 2002, 67(6):1823-1834 doi: 10.1190/1.1527082
    [8]
    Hutchinson M F, Gessler P E. Splines:More than Just a Smooth Interpolator[J]. Geoderma, 1994, 62(1-3):45-67 doi: 10.1016/0016-7061(94)90027-2
    [9]
    范家明, 陶大欣, 朱建青, 等.一种基于TIN的DEM表面C1光滑插值模型[J].测绘科学技术学报, 2007, 24(3):179-181 http://www.cqvip.com/qk/98086B/200703/24804748.html

    Fan Jiaming, Tao Daxin, Zhu Jianqing, et al. Surface Smooth Interpolation Model with C1 Continuities of DEM Based on TIN[J]. Journal of Zhengzhou Institute of Surverying and Mapping, 2007, 24(3):179-181 http://www.cqvip.com/qk/98086B/200703/24804748.html
    [10]
    Grohmann C H, Steiner S S. SRTM Resample with Short Distance-Low Nugget Kriging[J]. International Journal of Geographical Information Science, 2008, 22(8):895-906 doi: 10.1080/13658810701730152
    [11]
    Chen C F, Yue T X, Dai H L, et al. The Smoothness of HASM[J]. International Journal of Geographical Information Science, 2013, 27(8):1651-1667 doi: 10.1080/13658816.2013.787146
    [12]
    Fan L, Smethurst J, Atkinson P, et al. Propagation of Vertical and Horizontal Source Data Errors into a TIN with Linear Interpolation[J]. International Journal of Geographical Information Science, 2014(1):1-23
    [13]
    Reinoso J, León C, Mataix J. Estimating Horizontal Displacement between DEMs by Means of Particle Image Velocimetry Techniques[J]. Remote Sensing, 2016, 8(1):14-20
    [14]
    Delacourt C, Allemand P, Casson B, et al. Velocity Field of the "La Clapière" Landslide Measured by the Correlation of Aerial and QuickBird Satellite Images[J]. Geophysical Research Letters, 2004, 31(15):1-6
    [15]
    van Niel T G, McVicar T R, Li L, et al. The Impact of Misregistration on SRTM and DEM Image Differences[J]. Remote Sensing of Environment, 2008, 112(5):2430-2442 doi: 10.1016/j.rse.2007.11.003
    [16]
    Golub G H, van Loan C F. An Analysis of the Total Least Squares Problem[J]. SIAM Journal on Numerical Analysis, 1980, 17(6):883-893 doi: 10.1137/0717073
    [17]
    姚宜斌, 黄书华, 孔建, 等.空间直线拟合的整体最小二乘算法[J].武汉大学学报·信息科学版, 2014, 39(5):571-574 http://ch.whu.edu.cn/CN/abstract/abstract2985.shtml

    Yao Yibin, Huang Shuhua, Kong Jian, et al. Total Least Algorithm for Straight Line Fitting[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5):571-574 http://ch.whu.edu.cn/CN/abstract/abstract2985.shtml
    [18]
    Michael K, Mathias A. A Weighted Total Least-Squares Algorithm for Fitting a Straight Line[J]. Measurement Science and Technology, 2007, 18(11):3438-3446 doi: 10.1088/0957-0233/18/11/025
    [19]
    Franke R. Scattered Data Interpolation:Tests of Some Method[J]. Mathematics of Computation, 1982, 38(4):181-200 https://www.researchgate.net/publication/238834111_Scattered_Data_Interpolation_Tests_of_Some_Method
    [20]
    Chen C F, Li Y Y, Yan C Q, et al. A Robust Algorithm of Multiquadric Method Based on an Improved Huber Loss Function for Interpolating Remote-Sensing-Derived Elevation Data Sets[J]. Remote Sensing, 2015, 7(3):3347-3371 doi: 10.3390/rs70303347
    [21]
    Hardy R L. Multiquadric Equations of Topography and Other Irregular Surfaces[J]. Journal of Geophysical Research, 1971, 76(8):1905-1915 doi: 10.1029/JB076i008p01905
    [22]
    Chen C F, Yan C Q, Cao X W, et al. A Greedy-Based Multiquadric Method for LiDAR-Derived Ground Data Reduction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 102:110-121 doi: 10.1016/j.isprsjprs.2015.01.012
    [23]
    Hoerl A E, Kannard R W, Baldwin K F. Ridge Regression:Some Simulations[J]. Communications in Statistics, 1975, 4(2):105-123 doi: 10.1080/03610927508827232

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return