WANG Huarun, CHAI Hongzhou, WANG Min, PAN Zongpeng. BDS Triple-frequency Ionospheric Delay and Code Hardware Delay Estimation Method[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1438-1445. DOI: 10.13203/j.whugis20150675
Citation: WANG Huarun, CHAI Hongzhou, WANG Min, PAN Zongpeng. BDS Triple-frequency Ionospheric Delay and Code Hardware Delay Estimation Method[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1438-1445. DOI: 10.13203/j.whugis20150675

BDS Triple-frequency Ionospheric Delay and Code Hardware Delay Estimation Method

Funds: 

The National Natural Science Foundation of China 41574041

The National Natural Science Foundation of China 41604013

the Open Fund of Geographic Information Engineering State Key Laboratory SKLGIE2015-Z-1-1

More Information
  • Author Bio:

    WANG Huarun, master, assistant engineer, specializes in GNSS measurement data processing, E-mail: 593855433@qq.com

  • Received Date: May 02, 2017
  • Published Date: October 04, 2017
  • Getting precise undifferenced ambiguity resolution is the key issue when obtaining high-precise ionospheric delay with phase observations. Generally, extreme wide-lane (EWL), wide-lane (WL) and narrow-lane ambiguities are needed in the process under triple-frequency conditions. The MW combination wide-lane ambiguity may be fixed into a wrong integer because of the influence of code hardware delay and observation noise. In this paper BDS triple-frequency observation and GIM production are applied to resolve wide-lane ambiguity with a fixed EWL ambiguity and phase geometry-free (GF) combination. In addition, high-precise ionospheric delay is reconstructed and code hardware delay is separated. Test results show that the wide-lane ambiguity fixing success rate rises to 100% when assisted with GIM information, while the ambiguity is free of systemic bias. There is a difference of about 1.0m between the reconstructed ionospheric delay and GIM corrections, meaning an equivalent precision of 6 TECU. The standard deviation of the separated code hardware delay is less than 0.3 m.
  • [1]
    何海波. 高精度GPS动态测量及质量控制[D]. 郑州: 信息工程大学, 2002 http://cdmd.cnki.com.cn/Article/CDMD-90008-2002124711.htm

    He Haibo. Precise Kinematic GPS Surveying and Quality Control[D]. Zhengzhou: Information Engineering University, 2002 http://cdmd.cnki.com.cn/Article/CDMD-90008-2002124711.htm
    [2]
    袁运斌. 基于GPS的电离层监测及延迟改正的理论与方法的研究[D]. 武汉: 中国科学院研究生院, 2002 http://cdmd.cnki.com.cn/Article/CDMD-80057-2003040660.htm

    Yuan Yunbin. Study on Theories and Method of Correcting Ionopheric Delay and Monitoring Ionosphere Based on GPS[D]. Wuhan: Institute of Geodesy and Geophysics Chinese Academy of Sciences, 2002 http://cdmd.cnki.com.cn/Article/CDMD-80057-2003040660.htm
    [3]
    章红平. 基于地基GPS的中国区域电离层监测与延迟改正研究[D]. 上海: 中国科学院上海天文台, 2006 http://cdmd.cnki.com.cn/Article/CDMD-80022-2006109504.htm

    Zhang Hongping. Study on Method of Correcting Ionopheric Delay and Ionosphere Monitoring in Chinese Region Based on GPS[D]. Shanghai: Shanghai Observatory Chinese Academy of Sciences, 2006 http://cdmd.cnki.com.cn/Article/CDMD-80022-2006109504.htm
    [4]
    H-Pajares M, Juan J M, Sanz J. The IGS VTEC Maps A Reliable Source of Ionospheric Information Since 1998[J]. J Geod, 2009, 83(11):263-275 doi: 10.1007/s00190-008-0266-1
    [5]
    阮仁桂, 吴显兵, 冯来平, 等.同时估计电离层延迟的单频精密单点定位方法[J].测绘学报, 2012, 41(4):490-495 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201204005.htm

    Ruan Rengui, Wu Xianbing, Feng Laiping, et al.Single-Frequency Precise Point Positioning with Simultaneous Ionospheric Delay Estimation[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41:(4):490-495 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201204005.htm
    [6]
    邓健, 潘树国, 洪卓众.利用三频数据最优组合求解电离层延迟的方法[J].武汉大学学报·信息科学版, 2014, 39(5):600-604 http://ch.whu.edu.cn/CN/abstract/abstract2991.shtml

    Deng Jian, Pan Shuguo, Hong Zhuozhong. A Resolution Method for Ionospheric Delay with Optimal Combination of Three-frequency Data[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5):600-604 http://ch.whu.edu.cn/CN/abstract/abstract2991.shtml
    [7]
    李博峰, 沈云中, 周泽波.中长基线三频GNSS模糊度的快速算法[J].测绘学报, 2009, 38(4):296-301 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200904006.htm

    Li Bofeng, Shen Yunzhong, Zhou Zebo. A New Method for Medium and Long Rang Three Frequency GNSS Rapid Ambiguity Resolution[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(4):296-301 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200904006.htm
    [8]
    李金龙. 北斗GPS多频实时精密定位理论与算法[D]. 郑州: 信息工程大学, 2014 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb201511020&dbname=CJFD&dbcode=CJFQ

    Li Jinglong. BDS/GPS Multi-frequency Real-time Kinematic Positioning Theory and Algorithms[D]. Zhengzhou: Information Engineering University, 2014 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb201511020&dbname=CJFD&dbcode=CJFQ
    [9]
    王华润, 柴洪洲, 谢恺.北斗三频无几何、消电离层组合周跳探测方法研究[J].大地测量与地球动力学, 2015, 35(3):406-411 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201503011.htm

    Wang Huarun, Chai Hongzhou, Xie Kai. Study of Cycle-Slip Detection Using BDS Triple-frequency Geometry-Free and Ionosphere-Free Combination[J]. Journal of Geodesy and Geodynamics, 2015, 35(3):406-411 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201503011.htm
    [10]
    谢恺. 基于北斗三频的模糊度解算方法研究[D]. 郑州: 信息工程大学, 2014

    Xie Kai. Research on Ambiguity Resolution Based on BDS Triple-frequency[D].Zhengzhou: Information Engineering University, 2014
    [11]
    Yanming F. GNSS Three Carrier Ambiguity Resolution Using Ionosphere-reduced Virtual Signals[J]. Journal of Geodesy, 2008, 82:847-862 doi: 10.1007/s00190-008-0209-x
    [12]
    Spits J, Warnant R. Total Electron Content Monitoring Using Triple Frequency GNSS: Results with Giove-A/-B data[J]. Adv Space Res., 2011, 47:296-303 doi: 10.1016/j.asr.2010.08.027
  • Related Articles

    [1]ZHANG Fan, CHAI Hongzhou, WANG Min, XIAO Guorui, ZHANG Qiankun, DU Zhenqiang. Undifferenced and Uncombined PPP Ambiguity Resolution Combined with GPS/GLONASS Triple-Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1900-1910. DOI: 10.13203/j.whugis20220315
    [2]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [3]SONG Weiwei, ZHAO Xinke, LOU Yidong, SUN Weibin, ZHAO Zhengyu. Performance Evaluation of BDS-3 PPP-B2b Service[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 408-415. DOI: 10.13203/j.whugis20200686
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]GU Shengfeng, DAI Chunqi, HE Chengpeng, FANG Lizhe, WANG Zihao. Analysis of Semi-tightly Coupled Multi-GNSS PPP-RTK/VIO for Vehicle Navigation in Urban Areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1852-1861. DOI: 10.13203/j.whugis20210615
    [6]YAO Yibin, FENG Xinying, PENG Wenjie, LIU Lei. Local Atmosphere Augmentation Based on CORS for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1739-1748. DOI: 10.13203/j.whugis20180131
    [7]SONG Chao, HAO Jinming. Instantaneous Re-convergence of Kinematic PPP by the Use of Relationship Between Multiple Receiver Ambiguity[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 595-599, 690. DOI: 10.13203/j.whugis20140747
    [8]GUO Fei, ZHANG Xiaohong. Processing Capacity for GPS Data with Clock Slip Using Online PPP Services[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1333-1336.
    [9]TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. The Research of Dual Frequency Solution Method for Single Frequency Precise Point Positioning(PPP) Based on SEID Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1187-1190.
    [10]ZHAO Jianhu, WANG Shengping, ZHANG Hongmei, WEN Weidong. Long-Distance and On-the-Fly GPS Tidal Level Measurement Based on GPS PPK/PPP[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 910-913.
  • Cited by

    Periodical cited type(13)

    1. 冯晓亮,陈欢,李厚芝. 不同观测环境中的多模GNSS数据质量自动化检测方法. 测绘工程. 2024(06): 56-61 .
    2. 刘嘉伟,孙保琪,韩蕊,张喆,王侃,袁海波,杨旭海. GNSS多系统RTK授时性能分析. 导航定位与授时. 2023(03): 49-58 .
    3. 王浩浩,郝明,庄文泉. GNSS实时卫星钟差估计在地震监测中的应用. 导航定位与授时. 2023(03): 108-116 .
    4. 周长江,余海锋,王林伟,雷云平,岳彩亚. 无频间钟偏差改正的BDS-2三频非组合PPP随机模型优化. 测绘通报. 2023(12): 164-168 .
    5. 潘丽静,刘翔,夏川茹,王雷雷. GNSS精密卫星钟差实时估计与分析. 城市勘测. 2021(06): 73-76 .
    6. 郭磊,王甫红,桑吉章,张万威. 一种新的利用历元间位置变化量约束的GNSS导航算法. 武汉大学学报(信息科学版). 2020(01): 21-27 .
    7. 陶钧,张柔. GPS/BeiDou/Galileo/GLONASS实时精密卫星钟差估计. 测绘地理信息. 2020(03): 102-106 .
    8. 黄观文,王浩浩,谢威,曹钰. GNSS实时卫星钟差估计技术进展. 导航定位与授时. 2020(05): 1-9 .
    9. 张浩,赵兴旺,陈佩文,谢毅. GPS/BDS卫星钟差融合解算模型及精度分析. 合肥工业大学学报(自然科学版). 2020(09): 1192-1196 .
    10. 叶珍,李浩军. GNSS卫星钟差估计与结果分析. 导航定位与授时. 2019(03): 88-94 .
    11. 盛剑锋,张彩红,谭凯. 一种全球导航卫星系统钟差估计优化方案的量化研究. 科学技术与工程. 2019(14): 14-21 .
    12. 王尔申,赵珩,曲萍萍,庞涛,孙军. 基于拉格朗日插值法的卫星导航空间信号精度评估算法. 沈阳航空航天大学学报. 2019(04): 43-48 .
    13. 李云,崔文刚. 精密单点定位技术发展及应用. 科学技术与工程. 2019(27): 1-11 .

    Other cited types(10)

Catalog

    Article views PDF downloads Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return