SUN Weijun, YAN Ming, AI Songtao, ZHU Guocai, WANG Zemin, LIU Leibao, XU Yuetong, REN Jiawen. Ice Temperature Characteristics of the Austre Lovénbreen Glacier in NY-Ålesund, Arctic Region[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 79-85. DOI: 10.13203/j.whugis20150302
Citation: SUN Weijun, YAN Ming, AI Songtao, ZHU Guocai, WANG Zemin, LIU Leibao, XU Yuetong, REN Jiawen. Ice Temperature Characteristics of the Austre Lovénbreen Glacier in NY-Ålesund, Arctic Region[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 79-85. DOI: 10.13203/j.whugis20150302

Ice Temperature Characteristics of the Austre Lovénbreen Glacier in NY-Ålesund, Arctic Region

Funds: The National Natural Science Foundation of China, Nos. 41476162, 41401074; China Postdoctoral Science Foundation, No. 2014M551952; the National Social Science Foundation of China, No. 12BJY058.
More Information
  • Received Date: May 13, 2015
  • Published Date: January 04, 2016
  • Ice temperature is one of the most important physical parameters, during the period from 2009 to 2011, observations of ice temperature were carried out on the Austre Lovénbreen glacier in the NY-Ålesund of the arctic region at the points B2, E2 and F, in the layer 20 m below the surface. Ice temperature curves at these three points showed a cold season in May and warm season in September. Below the 9 m depth,the ice temperature at the point E2 was lower than that at points B2 and F. The lower boundary depth of active ice temperature layer at the three points was 14 m deep, with annual mean temperature of -2.76、-3.23 and -2.84℃. With increasing altitude, the lapse rate in the ice temperature at the 20 m depth (0.3℃·100 m-1) was higher than that at 10m depth (0.15℃·100 m-1). Ice temperatures at the 10m depth were higher than the calculated mean annual air temperatures by 1~4℃, demonstrating the impact of refreezing melted glacier surface water on the release of latent heat, causing increasing ice temperature.
  • [1]
    Yao T, Thompson L, Yang W, et al. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings[J]. Nature Climate Change, 2012, 1 580:1-5
    [2]
    Paterson W S B. The Physics of Glaciers (3rd Edition)[M]. UK:Pergamon Press, 1994
    [3]
    Ren Jiawen, Zhang Jinhua, Huang Maohuan. A Study of the Ice Temperature in No.1 Glacier in the Brômqi River Headwaters, Tianshan[J]. Journal of Glaciology and Geocryology, 1985,7(2):141-151 (任贾文,张金华,黄茂桓.天山乌鲁木齐河源1号冰川温度研究[J].冰川冻士, 1985,7(2):141-151)
    [4]
    Yao Tandong, Jiao Keqing, Zhang Xinping, et a1. Glaciologic Studies on Guliya Ice Cap[J]. Journal of Glaciology and Geocryology, 1992, 14(3):233-241(姚檀栋,焦克勤, 章新平, 等. 古里雅冰帽冰川学研究[J]. 冰川冻土, 1992, 14(3):233-241)
    [5]
    Liu Yaping, Hou Shugui, Wang Yetang, et al. Distribution of Borehole Temperature at Four High-altitude Alpine Glaciers in Central Asia[J]. Journal of Mountain Science, 2009, 6:221-227
    [6]
    Du Jiankuo, He Yuanqing, Li Shuang, et al. Mass Balance and Near-Surface Ice Temperature Structure of Baishui Glacier No.1 in Mt. Yulong[J]. Journal of Geographical Sciences, 2013, 23(4):668-678
    [7]
    Chen Bailian, Zhang Renhe, Sun Shufen, et al. A One-Dimensional Heat Transfer Model on Antarctic Ice Sheet and Modeling of Near-Surface Temperatures at Dome A, the Summit of Antarctic Plateau[J]. Science China Earth Science, 2010, 40(1):84-93(陈百炼,张人禾,孙菽芬,等. 一个冰盖近表层热传输模式及其对南极 DomeA 的温度模拟[J]. 中国科学:地球科学, 2010, 40(1):84 -93)
    [8]
    Wang Yetang, Hou Shugui. Spatial Distribution of 10 m Firn Temperature in the Antarctic Ice Sheet[J]. Science China Earth Science, 40(11):1 489-1 503(王叶堂, 侯书贵.南极冰盖 10 m 深度处粒雪温度空间分布[J].中国科学:地球科学, 2010, 40(11):1 489-1 503)
    [9]
    Yan Ming, Ren Jiawen, Zhang Zhanhai, et al. The Progress of Glaciological Studies in Svalbard and Chinese Construction of Glacier Monitoring System Close to Yellow River Station, NY-Ålesund, Svalbard[J]. Chinese Journal of Polar Research, 2006, 18(2):137-147(闫明, 任贾文, 张占海, 等.斯瓦尔巴群岛冰川学研究进展与我国北极冰川监测系统建设[J]. 极地研究, 2006, 18(2):137-147)
    [10]
    Ren Jiawen, Yan Ming. Glaciological Investigation During the First Scientific Expedition of Chinese Arctic Yellow River Station, 2004[J]. Journal of Glaciology and Geocryology, 2005, 27(1):124-127(任贾文, 闫明. 中国北极黄河站首次科学考察队冰川考察[J]. 冰川冻土, 2005, 27(1):124-127)
    [11]
    Ai Songtao, Wang Zemin, E Dongchen, et al. Topographic Survey on the Surface of Glacier Austre Lovénbreen and Pedersenbreen in Svalbard based on GPS method[J]. Chinese Journal of Polar Research, 2012, 24(1):53-59(艾松涛,王泽民,鄂栋臣, 等. 基于GPS 的北极冰川表面地形测量与制图[J]. 极地研究, 2012, 24(1):53-59)
    [12]
    Ai Songtao, Wang Zemin, E Dongchen, et al. Surface Movement Research of Arctic Glaciers Using GPS Method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11):1 337-1 340(艾松涛, 王泽民, 鄂栋臣, 等.利用GPS的北极冰川运动监测与分析[J].武汉大学学报·信息科学版,2012, 37(11):1 337-1 340)
    [13]
    Xu Mingxing, Yan Ming, Ren Jiawen, et al. The Studies of Surface Mass Balance and Ice Flow on Glaciers Austre Lovénbreen and Pedersenbreen, Svalbard, Arctic[J]. Chinese Journal of Polar Research, 22(1):9-19 (徐明星,闫明,任贾文,等. 北极Svalbard 地区Austre Lovénbreen Pedersenbreen 冰川表面物质平衡和运动特征分析[J]. 极地研究, 2010, 22(1):9-19)
    [14]
    Li Peng. Studies of Surface Ice Flow and Dynamics on the Glaciers Austre Lovénbreen and Pedersenbreen, Svalbard, Arctic[D]. Jinan:Shandong Normal University, 2013 (李鹏. 北极Svalbard地区Austre Lovénbreen和Pedersenbreen冰川冰流动力学分析研究[D]. 济南:山东师范大学, 2013)
    [15]
    Maturilli M, Herber A, König-Langlo G. Climatology and Time Series of Surface Meteorology in Ny-Ålesund, Svalbard[J]. Earth System Science Data, 2013, 5:155-163
    [16]
    Liu Shiyin. Field Observations in Glaciological Research[M]. Beijing:Science Press, 2012 (刘时银. 冰川观测研究方法[M]. 北京:科学出版社, 2012)
    [17]
    Li Zhen, Yao Tandong, Tian Lide, et al. Borehole Temperature at the Ice-core Drilling Site in the Muztag Ata Glacier, East Pamirs[J]. Journal of Glaciology and Geocryology, 2004, 26(3):284-288 (李真, 姚檀栋, 田立德,等. 慕士塔格冰川海拔7 000 m处冰芯钻孔温度[J]. 冰川冻土, 2004, 26(3):284-288)
    [18]
    Yao Tandong, JiaoKeqing, ZhangXinping, et al. Glaciological Studies on Guliya Ice Cap[J]. Journal of Glaciology and Geocryology, 1992,14(3):233-241 (姚檀栋,焦克勤,章新平,等.古里雅冰帽冰川学研究[J].冰川冻土, 1992,14(3):233-241)
    [19]
    Cai Baolin, Huang Maohuan, Xie Zichu. A Prelim Inary Research on the Temperature in Deep Borehole of Glacier No.1,Ortimqi River Headwaters[J]. Chinese Science Bulletin, 1988, 33(22):1 732-1 733 (蔡保林, 黄茂桓, 谢自楚. 乌鲁木齐河源1号冰川深孔温度的初步研究[J]. 科学通报, 1987, 32(22):1 732-1 733)
    [20]
    Huang Maohuan, Wang Zhongxiang, Ren Jiawen. Ice Temperature of Glaciers in China[J]. Journal of Glaciology and Geocryology, 1982, 4(1):20-28(黄茂桓,王仲祥,任贾文.我国冰川的温度[J].冰川冻土, 1982, 4(1):20-28)
    [21]
    Jania J, Mochnacki D, Gadek B. The Thermal Structure of Hansbreen, a Tidewater Glacier in Southern Spitsbergen, Svalbard[J]. Polar Research, 1996, 15 (1):53-66
    [22]
    Sobota I. Snow Accumulation, Melt, Mass Loss, and the Near-Surface Ice Temperature Structure of Irenebreen, Svalbard[J]. Polar Science, 2011, 5:327-336
  • Related Articles

    [1]JIN Biao, CHEN Shanshan, LI Zhulian, LI Yuqiang, LI Zixiao. SBAS GEO Satellite User Range Error and Position Augmentation Research[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1166-1175. DOI: 10.13203/j.whugis20210091
    [2]ZHANG Qin, WANG Le, LAI Wen, WANG Qining, LONG Zhengxin. Simulation and Comprehensive Performance Evaluation of the Integrated Space-Ground System for Low Earth Orbit-Enhanced BeiDou Navigation Satellite System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1863-1875. DOI: 10.13203/j.whugis20230342
    [3]BU Jinwei, ZUO Xiaoqing, JIN Lixin, CHANG Jun. Positioning Performance Evaluation of BDS/QZSS and Its Combined Systems in China, Japan and Their Peripheral Areas[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 574-585, 611. DOI: 10.13203/j.whugis20180228
    [4]WANG Lei, CHEN Ruizhi, LI Deren, YU Baoguo, WU Cailun. Quality Assessment of the LEO Navigation Augmentation Signals from Luojia-1A Satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2191-2196. DOI: 10.13203/j.whugis20180413
    [5]ZHANG Lihua, WEN Lianfa, JIA Shuaidong. Indices and Methods for Evaluating Quantificationally the Quality of Simplification of a Depth-Contour in Nautical Chart[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 496-501, 508. DOI: 10.13203/j.whugis20160113
    [6]LI Zuohu, HAO Jinming, LI Jianwen, ZHANG Chengjun. Analysis on QZSS Augmentation on Area Performance of GPS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 17-20.
    [7]LIU Xin, YIN Qian, GUO Ping. A Study of Software Fault Tolerance System Evaluation Strategy[J]. Geomatics and Information Science of Wuhan University, 2008, 33(10): 1018-1021.
    [8]CHEN Nan. Performance Evaluation of the Structure of GNSS Navigation Message[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 512-515.
    [9]ZHANG Yajie, TANG Xu, ZHU Guorui. Improvement on Evaluation Model for Base Land Price[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 551-554.
    [10]TANG Xu, HU Shiyuan, LIU Yaolin. Design and Integration of Repository in Land Evaluation System[J]. Geomatics and Information Science of Wuhan University, 2004, 29(5): 433-437. DOI: 10.13203/j.whugis2004.05.013
  • Cited by

    Periodical cited type(22)

    1. 张奋,贾小林,阮仁桂,朱永兴,宗文鹏. QZSS区域卫星导航系统性能分析. 测绘与空间地理信息. 2024(10): 11-15 .
    2. 金彪,李锐,王盾,刘磊,原晋栩,李子潇. 星基增强系统单频服务性能评估方法. 北京航空航天大学学报. 2024(10): 3062-3073 .
    3. 寇瑞雄,杨树文. 基于广义延拓逼近法的QZSS卫星钟差内插精度分析. 全球定位系统. 2022(04): 73-78 .
    4. 金彪,魏巍,陈姗姗,李东俊. SBAS星历改正数及UDRE参数生成算法分析. 武汉大学学报(信息科学版). 2021(01): 111-117 .
    5. 朱轶群,吴继忠. QZSS L6E增强服务改正数支持的PPP性能评估. 测绘科学. 2021(02): 34-41 .
    6. 倪育德,王子成. 地球静止轨道卫星数对广域增强系统性能的影响. 科学技术与工程. 2021(16): 6737-6745 .
    7. 陈姗姗,金彪,赵立谦,夏川茹,王雷雷. SBAS电文时序动态编排算法. 北京航空航天大学学报. 2021(10): 1996-2005 .
    8. 糜晓龙,袁运斌,张宝成. 多频多模GNSS接收机差分相位偏差的短期时变特性. 测绘学报. 2021(10): 1290-1297 .
    9. 董洲洋,朱兆涵,徐健. 全球导航卫星系统时间精度分析. 测绘与空间地理信息. 2021(11): 17-19 .
    10. 寇瑞雄,杨树文. 准天顶卫星系统广播星历精度评定和拟合精度分析. 全球定位系统. 2021(05): 39-47 .
    11. 布金伟,左小清,金立新,常军. BDS/QZSS及其组合系统在中国和日本及周边地区的定位性能评估. 武汉大学学报(信息科学版). 2020(04): 574-585+611 .
    12. 郝茂森,贾小林,曾添,焦文海. QZSS亚米级增强服务和MSAS增强定位性能评估. 导航定位与授时. 2020(05): 91-99 .
    13. 陈健,Yue Dongjie,Zhu Shaolin,Liu Zhiqiang,Dai Jianbiao. Comparison of availability and reliability among different combined-GNSS/RNSS precise point positioning. High Technology Letters. 2020(03): 235-242 .
    14. 赵镇,陈刚,胡志刚. 星基增强系统L1频段信息服务性能分析. 中国地震. 2020(04): 912-923 .
    15. 喻思琪,张小红,郭斐,李昕,潘林,马福建. 卫星导航进近技术进展. 航空学报. 2019(03): 16-37 .
    16. 张玉英,谭荣建,布金伟,李国柱,张东升. BDS+QZSS双系统组合PPP性能评估. 城市勘测. 2019(02): 107-113 .
    17. 何巧,陈伟康. GPS/QZSS双系统组合定位性能分析. 北京测绘. 2019(05): 541-545 .
    18. 江永生. QZSS增强信号对GPS定位增强效果的分析. 北京测绘. 2019(08): 969-973 .
    19. 徐炜,贾雪,王涛. QZSS/IRNSS对BDS在中国定位性能增强的评估. 测绘工程. 2018(01): 31-36 .
    20. 张文峰. 星基增强信号的GPS实时精密单点定位算法. 测绘科学. 2018(08): 62-67 .
    21. 毛琪,麻智超,卢满宏,王松. GAGAN系统在北京地区定位性能测试与评估. 遥测遥控. 2017(04): 53-57 .
    22. 张琳. QZSS导航系统在亚太地区的初步性能评估. 中国惯性技术学报. 2017(05): 618-623 .

    Other cited types(17)

Catalog

    Article views (1776) PDF downloads (366) Cited by(39)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return