JIN Biao, CHEN Shanshan, LI Zhulian, LI Yuqiang, LI Zixiao. SBAS GEO Satellite User Range Error and Position Augmentation Research[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1166-1175. DOI: 10.13203/j.whugis20210091
Citation: JIN Biao, CHEN Shanshan, LI Zhulian, LI Yuqiang, LI Zixiao. SBAS GEO Satellite User Range Error and Position Augmentation Research[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1166-1175. DOI: 10.13203/j.whugis20210091

SBAS GEO Satellite User Range Error and Position Augmentation Research

More Information
  • Received Date: June 28, 2022
  • Available Online: July 16, 2024
  • Objectives 

    Satellite based augmentation system (SBAS) improves the positioning accuracy and integrity by broadcasting ephemeris corrections and associated integrity parameters through geostationary Earth orbit (GEO) satellites. SBAS GEO satellite can also be used as a ranging source together with GPS satellites to improve the system performance. User range error (URE) of the GEO satellite and their effect on positioning results are investigated. URE of SBAS GEO and GPS satellite is determined by weighting the observation residuals which are derived with fixed station coordinates. SBAS messages are applied to correct the orbit and clock errors contained in broadcast ephemeris and the ionosphere delay. Ranging data from GEO satellite is engaged in the SBAS positioning process to explore the impact on positioning accuracy, integrity and availability.

    Methods 

    SBAS messages broadcast by wide area augmentation system (WAAS), BeiDou SBAS (BDSBAS), GPS aided GEO augmented navigation (GAGAN) and multi-functional satellite augmentation system (MSAS) and real data from international GNSS service (IGS) stations are applied to perform the assessment. European geostationary navigation overlay service (EGNOS) and system for differential corrections and monitoring (SDCM) are not included because of the absence of the ranging capability.

    Results 

    WAAS GEO satellite has the best performance with ranging accuracy better than 1.6 m. The 99.9% error bound is less than 6.8 m while the broadcast user differential range error (UDRE) for the GEO satellite is 7.5 m, which meets the integrity requirement. The 3 GEO satellites of BDSBAS show ranging biases of 14.32 m, 12.64 m and 17.44 m respectively, and the accuracy is better than 2.9 m. After removing the bias, the related 99.9% error bound is 8.60 m, 7.80 m and 11.60 m which suggests an UDRE of 11-12. User range accuracy (URA) of 15 is broadcast in message type 9 for the BDSBAS GEO satellites. URE of the GAGAN GEO satellite is better than 13.9 m and MSAS is better than 3.2 m. The UDRE of GAGAN and MSAS is 14. URE of GPS satellite after augmented by SBAS is also calculated for comparison purpose. Ranging accuracy of GPS is 0.60 m, 0.53 m, 0.21 m and 0.34 m for WAAS, BDSBAS, GAGAN and MSAS respectively. WAAS GEO satellite is selected to perform the positioning analysis whose UDRE is less than 14 so that it can be weighted properly in the solution. Engagement of GEO satellite in SBAS positioning will lead to lower position dilution of precision (PDOP) and reduce the protection level especially for the blockage circumstance. The system availability of localizer performance with vertical guidance 200 (LPV200) service is improved from 99.984% to 99.997% with collaboration of 3 GEO satellites' observation.

    Conclusions 

    With sufficient GPS satellites, the combination of GEO satellites will decrease the positioning accuracy because of the relative larger range error, while with less available satellites, combining the GEO satellite data effectively reduces the protection level and improves the system availability. Results suggest that SBAS GEO ranging data should be included in the SBAS solution for aviation users.

  • [1]
    Walter T, Shallberg K, Altshuler E, et al. WAAS at L5[J]. Navigation, 2018, 65:581-600.
    [2]
    Tabti L, Kahlouche S, Benadda B, et al. Improvement of Single-Frequency GPS Positioning Performance Based on EGNOS Corrections in Algeria[J]. Journal of Navigation, 2020, 73(4):846-860.
    [3]
    Dammalage T,Silva D D,Satirapod C. Performance Analysis of GPS Aided GEO Augmented Navigation (GAGAN) over SRI Lanka[J]. Engineering Journal, 2017, 21:305-314.
    [4]
    Saito S. MSAS System Development[C]//ICAO GBAS SBAS Implementation Workshop,Seoul,2019.
    [5]
    Chen S S, Jin B, Li D J, et al. Study on the Prediction Method of Single and Dual Frequency Service Area for BDSBAS[C]//China Satellite Navigation Conference,Singapore, USA, 2019.
    [6]
    Zhao L Q, Hu X G, Tang C P, et al. Generation of DFMC SBAS Corrections for BDS-3 Satellites and Improved Positioning Performances[J]. Advances in Space Research, 2020, 66(3):702-714.
    [7]
    Wu J Z, Wang K, Ahmed E. Preliminary Performance Analysis of a Prototype DFMC SBAS Service over Australia and Asia-Pacific[J]. Advances in Space Research, 2020, 66(6):1329-1341.
    [8]
    Lee E. System Development-KASS[C]// ICAO GBAS SBAS Implementation Workshop,Seoul, 2019.
    [9]
    金彪,魏巍,陈姗姗,等.SBAS星历改正数及UDRE 参数生成算法分析[J].武汉大学学报(信息科学版),2021,46(1):111-117.

    Jin Biao, Wei Wei, Chen Shanshan, et al. Analysis of SBAS Ephemeris Correction and UDRE Generation Algorithm[J].Geomatics and Information Scien‑ce of Wuhan University,2021, 46(1): 111-117.
    [10]
    EUROCAE WG-62. Minimum Operational Performance Standard for Galileo / Global Positioning System / Satellite Based Augmentation System Airborne Equipmentt: ED-259[S]. Saint-Denis, France: EUROCAE,2019.
    [11]
    RTCA SC-159. Minimum Operational Performance Standards for Global Positioning System/Wide Area Augmentation System Airborne Equipmentt:RTCA DO-229E[S/OL].[2021-01-01].https://global.ihs.com/doc_detail.cfm?item_s_key=00233409.
    [12]
    ICAO, International Standards and Recommended Practices Annex 10 Vol. I. Radio Navigation Aids: ISBN 978-92-9258-504-4[S]. Quebec, Canada: ICAO, 2018.
    [13]
    Fortin M A, Guay J C, Landry R J. Single Frequency WAAS Augmentation Observations (L1 vs. L5) on a Ground Based GPS L1 C/A Solution[J]. Positioning, 2014, 5:70-83.
    [14]
    Wu J T, Peck S. An Analysis of Satellite Integrity Monitoring Improvement for WAAS[C]// The 15th International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, OR, 2002.
    [15]
    Blanch J, Walter T, Enge P. A Clock and Ephemeris Algorithm for Dual Frequency SBAS[C]// The 24th International Technical Meeting of the Satellite Division of The Institute of Navigation, Portland, OR, 2011.
    [16]
    Blanch J, Walter T, Enge P. Evaluation of a Covariance-Based Clock and Ephemeris Error Bounding Algorithm for SBAS[C]//The 27th International Meeting of the Satellite Division of The Institute of Navigation, Tampa, FL, 2014.
    [17]
    Shao B, Ding Q, Wu X B. Estimation Method of SBAS Dual Frequency Range Error Integrity Parameter[J]. Satellite Navigation, 2020(1): 9.
    [18]
    Walter T, Hansen A, Blanch J, et al. Robust Detection of Ionospheric Irregularities[J]. Navigation, 2001, 48 (2): 89-100.
    [19]
    Sparks L, Blanch J, Pandya N. Estimating Ionospheric Delay Using Kriging: 1. Methodology[J]. Radio Science, 2011, 46(6): 1-13.
    [20]
    Sparks L, Blanch J, Pandya N. Estimating Ionospheric Delay Using Kriging: 2 Impact on Satellite Based Augmentation System Availability[J]. Radio Science, 2011, 46(6): 1-10.
    [21]
    Jin B, Chen S S, Li D J, et al. Ionospheric Correlation Analysis and Spatial Threat Model for SBAS in China Region[J]. Advances in Space Research, 2020, 66(12): 2873-2887.
    [22]
    Blanch J, Walter T, Phelts R, et al. Near Term Improvements to WAAS Availability[C]//The 2013 International Technical Meeting of the Institute of Navigation, San Diego, CA , 2013.
    [23]
    Grewal M S, Brown W, Evans S, et al. Ionospheric Delay Validation Using Dual Frequency Signal from GPS at GEO Uplink Subsystem (GUS) Locations[C]//The Institute of Navigation 12th International Technical Meeting, Alexandria, VA, 1999.
    [24]
    Grewal M S, Brown W, Lucy R. Test Results of Geostationary Satellite (GEO) Uplink Sub-System (GUS) Using GEO Navigation Payloads, Monographs of the Global Positioning System[J]. Navigation, 1999, 4:339-348.
    [25]
    Grewal M S, Hsu P, Plummer T W. A New Algorithm for WAAS GEO Uplink Subsystem (GUS) Clock Steering [C]//The 16th International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, Oregon, 2003.
    [26]
    蔡洪亮, 孟轶男, 耿涛, 等. 北斗三号卫星星地星间联合精密定轨初步结果[J]. 武汉大学学报(信息科学版),2020,45(10):1493-1500.

    Cai Hongliang, Meng Yinan, Geng Tao, et al. Initial Results of Precise Orbit Determination Using Satellite-Ground and Inter-Satellite Link Observations for BDS-3 Satellites[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1493-1500.
    [27]
    卢鋆,宿晨庚,胡敏,等.北斗三号系统互操作实现与性能分析[J]. 中国科学:物理学 力学 天文学, 2021, 51(1): 019504.

    Lu Jun, Su Chengeng, Hu Min, et al. Analysis of the Beidou Navigation Satellite System: Interoperability and Performance[J]. Sci Sin-Phys Mech Astron, 2021, 51(1): 019504.
    [28]
    徐磊,常国宾,高井祥,等.附加闭合差约束的BDS频间偏差估计模型[J].武汉大学学报(信息科学版), 2021,46(4):520-529.

    Xu Lei, Chang Guobin, Gao Jingxiang, et al. Estimation of BDS DCB Based on Closure Constraint[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 520-529.
    [29]
    杨建华,唐成盼,宋叶志,等.GNSS导航电文空间信号测距误差分析[J]. 中国科学:物理学 力学 天文学, 2021, 51(1): 019508.

    Yang Jianhua, Tang Chengpan, Song Yezhi, et al. Analysis of Signal-in-Space Ranging Error of GNSS Navigation Message[J]. Sci Sin-Phys Mech Astron, 2021, 51(1): 019508.
    [30]
    孔垚,孙保琪,杨旭海,等. 利用SLR数据进行北斗卫星广播星历精度分析[J]. 武汉大学学报(信息科学版), 2017, 42(6): 831-837.

    Kong Yao,Sun Baoqi, Yang Xuhai, et al. Precision Analysis of BeiDou Broadcast Ephemeris by Using SLR Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 831-837.
  • Related Articles

    [1]CHEN Xiude, LIU Hui, YU Baoguo, SHENG Chuanzhen, HUANG Guanwen, HUI Shenying, YING Junjun. BeiDou/GNSS Wide-Area Precise Positioning Technology and Service: Current Situation and Prospects[J]. Geomatics and Information Science of Wuhan University, 2025, 50(3): 413-429. DOI: 10.13203/j.whugis20230472
    [2]LI Jun, ZHU Huizhong, LU Yangyang, XU Aigong. BDS Pseudorange Augmentation Positioning Based on Carrier Smoothing Pseudorange[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2187-2198. DOI: 10.13203/j.whugis20220150
    [3]ZHAO Qile, TAO Jun, GUO Jing, CHEN Guo, XU Xiaolong, ZHANG Qiang, ZHANG Gaojian, XU Shengyi, LI Junqiang. Wide-Area Instantaneous cm-Level Precise Point Positioning: Method and Service System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1058-1069. DOI: 10.13203/j.whugis20230202
    [4]ZHANG Hengcai, YU Baoguo, BI Jinzhong, PAN Shuguo, LU Feng. A Survey of Scene-Based Augmentation Systems for Comprehensive PNT[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 491-505. DOI: 10.13203/j.whugis20220320
    [5]JIN Biao, WEI Wei, CHEN Shanshan, LI Dongjun. Analysis of SBAS Ephemeris Correction and UDRE Generation Algorithm[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 111-117. DOI: 10.13203/j.whugis20190033
    [6]ZHU Huizhong, LI Jun, XU Aigong, ZHEN Jie, LEI Xiaoting. High-Precision BDS Augmented Positioning Method for Disaster Emergency Environment on Smart Device[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1155-1167. DOI: 10.13203/j.whugis20200123
    [7]ZHANG Yong, WANG Qing, HUANG Yongjiang. Equivalence Transformation Theory from Zero-Difference PPP Augmentation Information to Virtual Observation Data for Differential Positioning[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 221-227. DOI: 10.13203/j.whugis20170087
    [8]WANG Lei, CHEN Ruizhi, LI Deren, YU Baoguo, WU Cailun. Quality Assessment of the LEO Navigation Augmentation Signals from Luojia-1A Satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2191-2196. DOI: 10.13203/j.whugis20180413
    [9]LOU Yidong, ZHENG Fu, GONG Xiaopeng, GU Shengfeng. Evaluation of QZSS System Augmentation Service Performance in China Region[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 298-303. DOI: 10.13203/j.whugis20140273
    [10]LI Zuohu, HAO Jinming, LI Jianwen, ZHANG Chengjun. Analysis on QZSS Augmentation on Area Performance of GPS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 17-20.
  • Cited by

    Periodical cited type(1)

    1. 霍俊耀,李锐,张凌云,杨甜甜,聂欣. BDSBAS上注电文还原方法. 导航定位学报. 2025(01): 146-154 .

    Other cited types(0)

Catalog

    Article views (1447) PDF downloads (98) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return