JIN Biao, CHEN Shanshan, LI Zhulian, LI Yuqiang, LI Zixiao. SBAS GEO Satellite User Range Error and Position Augmentation Research[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1166-1175. DOI: 10.13203/j.whugis20210091
Citation: JIN Biao, CHEN Shanshan, LI Zhulian, LI Yuqiang, LI Zixiao. SBAS GEO Satellite User Range Error and Position Augmentation Research[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1166-1175. DOI: 10.13203/j.whugis20210091

SBAS GEO Satellite User Range Error and Position Augmentation Research

More Information
  • Received Date: June 28, 2022
  • Available Online: July 16, 2024
  • Objectives 

    Satellite based augmentation system (SBAS) improves the positioning accuracy and integrity by broadcasting ephemeris corrections and associated integrity parameters through geostationary Earth orbit (GEO) satellites. SBAS GEO satellite can also be used as a ranging source together with GPS satellites to improve the system performance. User range error (URE) of the GEO satellite and their effect on positioning results are investigated. URE of SBAS GEO and GPS satellite is determined by weighting the observation residuals which are derived with fixed station coordinates. SBAS messages are applied to correct the orbit and clock errors contained in broadcast ephemeris and the ionosphere delay. Ranging data from GEO satellite is engaged in the SBAS positioning process to explore the impact on positioning accuracy, integrity and availability.

    Methods 

    SBAS messages broadcast by wide area augmentation system (WAAS), BeiDou SBAS (BDSBAS), GPS aided GEO augmented navigation (GAGAN) and multi-functional satellite augmentation system (MSAS) and real data from international GNSS service (IGS) stations are applied to perform the assessment. European geostationary navigation overlay service (EGNOS) and system for differential corrections and monitoring (SDCM) are not included because of the absence of the ranging capability.

    Results 

    WAAS GEO satellite has the best performance with ranging accuracy better than 1.6 m. The 99.9% error bound is less than 6.8 m while the broadcast user differential range error (UDRE) for the GEO satellite is 7.5 m, which meets the integrity requirement. The 3 GEO satellites of BDSBAS show ranging biases of 14.32 m, 12.64 m and 17.44 m respectively, and the accuracy is better than 2.9 m. After removing the bias, the related 99.9% error bound is 8.60 m, 7.80 m and 11.60 m which suggests an UDRE of 11-12. User range accuracy (URA) of 15 is broadcast in message type 9 for the BDSBAS GEO satellites. URE of the GAGAN GEO satellite is better than 13.9 m and MSAS is better than 3.2 m. The UDRE of GAGAN and MSAS is 14. URE of GPS satellite after augmented by SBAS is also calculated for comparison purpose. Ranging accuracy of GPS is 0.60 m, 0.53 m, 0.21 m and 0.34 m for WAAS, BDSBAS, GAGAN and MSAS respectively. WAAS GEO satellite is selected to perform the positioning analysis whose UDRE is less than 14 so that it can be weighted properly in the solution. Engagement of GEO satellite in SBAS positioning will lead to lower position dilution of precision (PDOP) and reduce the protection level especially for the blockage circumstance. The system availability of localizer performance with vertical guidance 200 (LPV200) service is improved from 99.984% to 99.997% with collaboration of 3 GEO satellites' observation.

    Conclusions 

    With sufficient GPS satellites, the combination of GEO satellites will decrease the positioning accuracy because of the relative larger range error, while with less available satellites, combining the GEO satellite data effectively reduces the protection level and improves the system availability. Results suggest that SBAS GEO ranging data should be included in the SBAS solution for aviation users.

  • [1]
    Walter T, Shallberg K, Altshuler E, et al. WAAS at L5[J]. Navigation, 2018, 65:581-600.
    [2]
    Tabti L, Kahlouche S, Benadda B, et al. Improvement of Single-Frequency GPS Positioning Performance Based on EGNOS Corrections in Algeria[J]. Journal of Navigation, 2020, 73(4):846-860.
    [3]
    Dammalage T,Silva D D,Satirapod C. Performance Analysis of GPS Aided GEO Augmented Navigation (GAGAN) over SRI Lanka[J]. Engineering Journal, 2017, 21:305-314.
    [4]
    Saito S. MSAS System Development[C]//ICAO GBAS SBAS Implementation Workshop,Seoul,2019.
    [5]
    Chen S S, Jin B, Li D J, et al. Study on the Prediction Method of Single and Dual Frequency Service Area for BDSBAS[C]//China Satellite Navigation Conference,Singapore, USA, 2019.
    [6]
    Zhao L Q, Hu X G, Tang C P, et al. Generation of DFMC SBAS Corrections for BDS-3 Satellites and Improved Positioning Performances[J]. Advances in Space Research, 2020, 66(3):702-714.
    [7]
    Wu J Z, Wang K, Ahmed E. Preliminary Performance Analysis of a Prototype DFMC SBAS Service over Australia and Asia-Pacific[J]. Advances in Space Research, 2020, 66(6):1329-1341.
    [8]
    Lee E. System Development-KASS[C]// ICAO GBAS SBAS Implementation Workshop,Seoul, 2019.
    [9]
    金彪,魏巍,陈姗姗,等.SBAS星历改正数及UDRE 参数生成算法分析[J].武汉大学学报(信息科学版),2021,46(1):111-117.

    Jin Biao, Wei Wei, Chen Shanshan, et al. Analysis of SBAS Ephemeris Correction and UDRE Generation Algorithm[J].Geomatics and Information Scien‑ce of Wuhan University,2021, 46(1): 111-117.
    [10]
    EUROCAE WG-62. Minimum Operational Performance Standard for Galileo / Global Positioning System / Satellite Based Augmentation System Airborne Equipmentt: ED-259[S]. Saint-Denis, France: EUROCAE,2019.
    [11]
    RTCA SC-159. Minimum Operational Performance Standards for Global Positioning System/Wide Area Augmentation System Airborne Equipmentt:RTCA DO-229E[S/OL].[2021-01-01].https://global.ihs.com/doc_detail.cfm?item_s_key=00233409.
    [12]
    ICAO, International Standards and Recommended Practices Annex 10 Vol. I. Radio Navigation Aids: ISBN 978-92-9258-504-4[S]. Quebec, Canada: ICAO, 2018.
    [13]
    Fortin M A, Guay J C, Landry R J. Single Frequency WAAS Augmentation Observations (L1 vs. L5) on a Ground Based GPS L1 C/A Solution[J]. Positioning, 2014, 5:70-83.
    [14]
    Wu J T, Peck S. An Analysis of Satellite Integrity Monitoring Improvement for WAAS[C]// The 15th International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, OR, 2002.
    [15]
    Blanch J, Walter T, Enge P. A Clock and Ephemeris Algorithm for Dual Frequency SBAS[C]// The 24th International Technical Meeting of the Satellite Division of The Institute of Navigation, Portland, OR, 2011.
    [16]
    Blanch J, Walter T, Enge P. Evaluation of a Covariance-Based Clock and Ephemeris Error Bounding Algorithm for SBAS[C]//The 27th International Meeting of the Satellite Division of The Institute of Navigation, Tampa, FL, 2014.
    [17]
    Shao B, Ding Q, Wu X B. Estimation Method of SBAS Dual Frequency Range Error Integrity Parameter[J]. Satellite Navigation, 2020(1): 9.
    [18]
    Walter T, Hansen A, Blanch J, et al. Robust Detection of Ionospheric Irregularities[J]. Navigation, 2001, 48 (2): 89-100.
    [19]
    Sparks L, Blanch J, Pandya N. Estimating Ionospheric Delay Using Kriging: 1. Methodology[J]. Radio Science, 2011, 46(6): 1-13.
    [20]
    Sparks L, Blanch J, Pandya N. Estimating Ionospheric Delay Using Kriging: 2 Impact on Satellite Based Augmentation System Availability[J]. Radio Science, 2011, 46(6): 1-10.
    [21]
    Jin B, Chen S S, Li D J, et al. Ionospheric Correlation Analysis and Spatial Threat Model for SBAS in China Region[J]. Advances in Space Research, 2020, 66(12): 2873-2887.
    [22]
    Blanch J, Walter T, Phelts R, et al. Near Term Improvements to WAAS Availability[C]//The 2013 International Technical Meeting of the Institute of Navigation, San Diego, CA , 2013.
    [23]
    Grewal M S, Brown W, Evans S, et al. Ionospheric Delay Validation Using Dual Frequency Signal from GPS at GEO Uplink Subsystem (GUS) Locations[C]//The Institute of Navigation 12th International Technical Meeting, Alexandria, VA, 1999.
    [24]
    Grewal M S, Brown W, Lucy R. Test Results of Geostationary Satellite (GEO) Uplink Sub-System (GUS) Using GEO Navigation Payloads, Monographs of the Global Positioning System[J]. Navigation, 1999, 4:339-348.
    [25]
    Grewal M S, Hsu P, Plummer T W. A New Algorithm for WAAS GEO Uplink Subsystem (GUS) Clock Steering [C]//The 16th International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, Oregon, 2003.
    [26]
    蔡洪亮, 孟轶男, 耿涛, 等. 北斗三号卫星星地星间联合精密定轨初步结果[J]. 武汉大学学报(信息科学版),2020,45(10):1493-1500.

    Cai Hongliang, Meng Yinan, Geng Tao, et al. Initial Results of Precise Orbit Determination Using Satellite-Ground and Inter-Satellite Link Observations for BDS-3 Satellites[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1493-1500.
    [27]
    卢鋆,宿晨庚,胡敏,等.北斗三号系统互操作实现与性能分析[J]. 中国科学:物理学 力学 天文学, 2021, 51(1): 019504.

    Lu Jun, Su Chengeng, Hu Min, et al. Analysis of the Beidou Navigation Satellite System: Interoperability and Performance[J]. Sci Sin-Phys Mech Astron, 2021, 51(1): 019504.
    [28]
    徐磊,常国宾,高井祥,等.附加闭合差约束的BDS频间偏差估计模型[J].武汉大学学报(信息科学版), 2021,46(4):520-529.

    Xu Lei, Chang Guobin, Gao Jingxiang, et al. Estimation of BDS DCB Based on Closure Constraint[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 520-529.
    [29]
    杨建华,唐成盼,宋叶志,等.GNSS导航电文空间信号测距误差分析[J]. 中国科学:物理学 力学 天文学, 2021, 51(1): 019508.

    Yang Jianhua, Tang Chengpan, Song Yezhi, et al. Analysis of Signal-in-Space Ranging Error of GNSS Navigation Message[J]. Sci Sin-Phys Mech Astron, 2021, 51(1): 019508.
    [30]
    孔垚,孙保琪,杨旭海,等. 利用SLR数据进行北斗卫星广播星历精度分析[J]. 武汉大学学报(信息科学版), 2017, 42(6): 831-837.

    Kong Yao,Sun Baoqi, Yang Xuhai, et al. Precision Analysis of BeiDou Broadcast Ephemeris by Using SLR Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 831-837.
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(30)

Catalog

    Article views (1448) PDF downloads (98) Cited by(58)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return