ZHANG Qin, WANG Le, LAI Wen, WANG Qining, LONG Zhengxin. Simulation and Comprehensive Performance Evaluation of the Integrated Space-Ground System for Low Earth Orbit-Enhanced BeiDou Navigation Satellite System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1863-1875. DOI: 10.13203/j.whugis20230342
Citation: ZHANG Qin, WANG Le, LAI Wen, WANG Qining, LONG Zhengxin. Simulation and Comprehensive Performance Evaluation of the Integrated Space-Ground System for Low Earth Orbit-Enhanced BeiDou Navigation Satellite System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1863-1875. DOI: 10.13203/j.whugis20230342

Simulation and Comprehensive Performance Evaluation of the Integrated Space-Ground System for Low Earth Orbit-Enhanced BeiDou Navigation Satellite System

More Information
  • Received Date: September 17, 2023
  • Available Online: November 08, 2023
  • Objectives 

    The integration of low earth orbit (LEO) constellations into the BeiDou satellite navigation system has been under consideration, aiming to establish a global coverage space-time network through the fusion of high, medium, and low earth orbit constellations. However, it should be noted that the LEO constellation is currently in the construction phase, and there is a lack of comprehensive simulation and performance evaluation for the LEO-enhanced BeiDou system.

    Methods 

    Therefore, In this contribution, research is conducted centered around the highly realistic simulation and comprehensive performance evaluation of the LEO-enhanced BeiDou system, a sophisticated simulation model of the LEO constellation was developed by integrating actual measurement data and space physics theoretical models, and then a comprehensive performance evaluation method for the LEO-enhanced system was proposed, and an integrated space-ground platform for simulation and comprehensive performance evaluation of the LEO-enhanced BeiDou system was designed and established, the research findings revealed the performance enhancement effects of the LEO constellation on the existing navigation system.

    Results 

    The results indicate that, on the system-terminal, the LEO augmentation improves the precision of BeiDou's high-precision products while simultaneously reducing the limit on the number and distribution of ground stations. On the user-terminal, the inclusion of LEO satellites holds the potential to reduce the convergence time of BeiDou precise point positioning to less than 10 minutes.

    Conclusions 

    The research results provide theoretical and practical support for the development of the LEO-enhanced navigation system.

  • [1]
    王密, 仵倩玉, 肖晶, 等. 低轨巨型星座遥感信息"云-边-端"智能服务关键技术[J]. 武汉大学学报(信息科学版), 2023, 48(8): 1256-1263. doi: 10.13203/j.whugis20220767

    Wang Mi, Wu Qianyu, Xiao Jing, et al. Key Technologies on "Cloud-Edge-End" Collaborative Intelligent Service of Low-Orbit Giant Constellation[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1256-1263. doi: 10.13203/j.whugis20220767
    [2]
    Keller H, Salzwedel H. Link Strategy for the Mobile Satellite System Iridium[C]//IEEE Vehicular Technology Conference, Atlanta, USA, 2002.
    [3]
    Reid T G, Neish A M, Walter T F, et al. Leveraging Commercial Broadband LEO Constellations for Navigating[C]//The 29th International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, Oregon, USA, 2016.
    [4]
    张小红, 马福建. 低轨导航增强GNSS发展综述[J]. 测绘学报, 2019, 48(9): 1073-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201909002.htm

    Zhang Xiaohong, Ma Fujian. Review of the Development of LEO Navigation-Augmented GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1073-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201909002.htm
    [5]
    "中国星网"成立![EB/OL]. [2023-08-28]. https://rfic.cuit.edu.cn/info/2095/1173.html.

    "China Star Network" Established![EB/OL]. [2023-08-28]. https://rfic.cuit.edu.cn/info/2095/1173.html.
    [6]
    《新时代的中国北斗》白皮书全文[EB/OL]. (2022-11-04) [2023-08-28]. http://www.beidou.gov.cn/zt/xwfbh/xsddzgbd/gdxw11/202211/t20221104_24806.html.

    "China BeiDou in the New Era" White Paper Full Text[EB/OL]. (2022-11-04) [2023-08-28]. http://www.beidou.gov.cn/zt/xwfbh/xsddzgbd/gdxw11/202211/t20221104_24806.html.
    [7]
    Michalak G, Glaser S, Neumayer K H, et al. Precise Orbit and Earth Parameter Determination Supported by LEO Satellites, Inter-Satellite Links and Synchronized Clocks of a Future GNSS[J]. Advances in Space Research, 2021, 68(12): 4753-4782. doi: 10.1016/j.asr.2021.03.008
    [8]
    杨宇飞, 杨元喜, 徐君毅, 等. 低轨卫星对导航卫星星座轨道测定的增强作用[J]. 武汉大学学报(信息科学版), 2020, 45(1): 46-52. doi: 10.13203/j.whugis20180215

    Yang Yufei, Yang Yuanxi, Xu Junyi, et al. Navigation Satellites Orbit Determination with the Enhancement of Low Earth Orbit Satellites[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 46-52. doi: 10.13203/j.whugis20180215
    [9]
    Joerger M, Gratton L, Pervan B, et al. Analysis of Iridium-Augmented GPS for Floating Carrier Phase Positioning[J]. Annual of Navigation, 2010, 57(2): 137-160. doi: 10.1002/j.2161-4296.2010.tb01773.x
    [10]
    Li X, Ma F, Li X, et al. LEO Constellation-Augmented Multi-GNSS for Rapid PPP Convergence[J]. Journal of Geodesy, 2018, 93(5): 749-764.
    [11]
    Enge P K, Ferrell B, Bennett J, et al. Orbital Diversity for Satellite Navigation[C]//The 25th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2012), Nashville, TN, USA, 2012.
    [12]
    Reid T G R, Neish A M, Walter T, et al. Broadband LEO Constellations for Navigation[J]. Navigation, 2018, 65(2): 205-220. doi: 10.1002/navi.234
    [13]
    赵智博, 任晓东, 张小红, 等. 联合GNSS/LEO卫星观测数据的区域电离层建模与精度评估[J]. 武汉大学学报(信息科学版), 2021, 46(2): 262-269. doi: 10.13203/j.whugis20190252

    Zhao Zhibo, Ren Xiaodong, Zhang Xiaohong, et al. Regional Ionospheric Modeling and Accuracy Assessment Using GNSS/LEO Satellites Observations[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 262-269. doi: 10.13203/j.whugis20190252
    [14]
    Zhang T J, Shen H X, Li Z, et al. Restricted Constellation Design for Regional Navigation Augmentation[J]. Acta Astronautica, 2018, 150: 231-239. doi: 10.1016/j.actaastro.2018.04.044
    [15]
    田野, 张立新, 边朗. 低轨导航增强卫星星座设计[J]. 中国空间科学技术, 2019, 39(6): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201906008.htm

    Tian Ye, Zhang Lixin, Bian Lang. Design of LEO Satellites Augmented Constellation for Navigation[J]. Chinese Space Science and Technology, 2019, 39(6): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201906008.htm
    [16]
    聂欣, 郑晋军, 范本尧. 低轨卫星导航系统技术发展研究[J]. 航天器工程, 2022, 31(1): 116-124. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC202201016.htm

    Nie Xin, Zheng Jinjun, Fan Benyao. Study on Development of Technology Path for LEO Satellite Navigation System[J]. Spacecraft Engineering, 2022, 31(1): 116-124. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC202201016.htm
    [17]
    Huang W, Männel B, Sakic P, et al. Integrated Processing of Ground- and Space-Based GPS Observations: Improving GPS Satellite Orbits Observed with Sparse Ground Networks[J]. Journal of Geodesy, 2020, 94(10). doi: 10.1007/s00190-020-01424-1
    [18]
    Li X, Zhang K, Meng X, et al. LEO–BDS–GPS Integrated Precise Orbit Modeling Using FengYun-3D, FengYun-3C Onboard and Ground Observations[J]. GPS Solutions, 2020, 24(2).
    [19]
    Li X, Zhang K, Ma F, et al. Integrated Precise Orbit Determination of Multi-GNSS and Large LEO Constellations[J]. Remote Sensing, 2019, 11(21).
    [20]
    Li B, Ge H, Ge M, et al. LEO Enhanced Global Navigation Satellite System (LeGNSS) for Real-time Precise Positioning Services[J]. Advances in Space Research, 2019, 63(1): 73-93. https://www.sciencedirect.com/science/article/pii/S0273117718306264
    [21]
    曾添, 隋立芬, 贾小林, 等. 小型化LEO星座与BDS-3全星座联合定轨仿真[J]. 武汉大学学报(信息科学版), 2022, 47(1): 61-68. doi: 10.13203/j.whugis20190426

    Zeng Tian, Sui Lifen, Jia Xiaolin, et al. Simulation of Combined Orbit Determination with a Small LEO Constellation and BDS-3 Full Constellation[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 61-68. doi: 10.13203/j.whugis20190426
    [22]
    王磊, 陈锐志, 李德仁, 等. 珞珈一号低轨卫星导航增强系统信号质量评估[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2191-2196. doi: 10.13203/j.whugis20180413

    Wang Lei, Chen Ruizhi, Li Deren, et al. Quality Assessment of the LEO Navigation Augmentation Signals from Luojia-1A Satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2191-2196. doi: 10.13203/j.whugis20180413
    [23]
    Wu Z, Yu B, Sheng C, et al. In-flight Performance Analysis of the Navigation Augmentation Payload on LEO Communication Satellite: A Preliminary Study on WT01 Mission[J]. Geo-spatial Information Science, 2022, 25(1): 88-103.
    [24]
    贺延伟. 低轨星座设计及增强北斗三号分析[D]. 西安: 长安大学, 2022.

    He Yanwei. Design of LEO Constellation and Enhanced BDS-3 Analysis[D]. Xi'an: Chang'an University, 2022.
    [25]
    Ge H, Li B, Ge M, et al. Initial Assessment of Precise Point Positioning with LEO Enhanced Global Navigation Satellite Systems (LeGNSS)[J]. Remote Sensing, 2018, 10(7): 984.
    [26]
    Su M, Su X, Zhao Q, et al. BeiDou Augmented Navigation from Low Earth Orbit Satellites[J]. Sensors, 2019, 19(1): 198.
    [27]
    Ma F, Zhang X, Hu J, et al. Frequency Design of LEO-Based Navigation Augmentation Signals for Dual-band Ionospheric-Free Ambiguity Resolution[J]. GPS Solutions, 2022, 26(2): 53. doi: 10.1007/s10291-022-01240-4
    [28]
    王乐, 折浩男, 王浩浩, 等. 北斗实时精密轨道和钟差产品解算策略及精度评定[J]. 导航定位与授时, 2020, 7(5): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS202005007.htm

    Wang Le, She Haonan, Wang Haohao, et al. BDS Real-Time Precise Orbit and Clock Offset Products Solution Strategy and Accuracy Evaluation[J]. Navigation Positioning and Timing, 2020, 7(5): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS202005007.htm
    [29]
    黄观文. GNSS星载原子钟质量评价及精密钟差算法研究[D]. 西安: 长安大学, 2012.

    Huang Guanwen. Research on Algorithms of Precise Clock Offset and Quality Evaluation of GNSS Satellite Clock[D]. Xi'an: Chang'an University, 2012.
    [30]
    Chen L, Jiao W, Huang X, et al. Study on Signal-in-Space Errors Calculation Method and Statistical Characterization of BeiDou Navigation Satellite System[C]//China Satellite Navigation Conference, Shanghai, China, 2013.
    [31]
    Heng L, Gao G, Walter T, et al. Statistical Characterization of GPS Signal-in-Space Errors [C]//International Technical Meeting of The Institute of Navigation, San Diego, CA, USA, 2012.
    [32]
    Delgado N, Nunes F, Seco-Granados G. On the Relation Between GDOP and the Volume Described by the User-to-Satellite Unit Vectors for GNSS Positioning[J]. GPS Solutions, 2017, 21(3): 1139-1147. doi: 10.1007/s10291-016-0592-3
    [33]
    Yan X, Liu C, Huang G, et al. A Priori Solar Radiation Pressure Model for BeiDou-3 MEO Satellites[J]. Remote Sensing, 2019, 11(13): 1605.
    [34]
    Montenbruck O, Steigenberger P, Hugentobler U. Enhanced Solar Radiation Pressure Modeling for Galileo Satellites[J]. Journal of Geodesy, 2014, 89(3): 283-297.
    [35]
    赵齐乐, 刘经南, 葛茂荣, 等. 用PANDA对GPS和CHAMP卫星精密定轨[J]. 大地测量与地球动力学, 2005, 25(2): 113-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200502020.htm

    Zhao Qile, Liu Jingnan, Ge Maorong, et al. Precise Orbit Determination of GPS and CHAMP Satellites with PANDA Software[J]. Crustal Deformation and Earthquake, 2005, 25(2): 113-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200502020.htm
  • Related Articles

    [1]Gan Wenxia, Pan Junjie, Geng Jing, Wang Huini, Hu Xiaodi. A Fusion Method for Infrared and Visible Images in All-weather Road Scenes[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240173
    [2]SONG Zhina, SUI Haigang, LI Yongcheng. A Survey on Ship Detection Technology in High-Resolution Optical Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1703-1715. DOI: 10.13203/j.whugis20200481
    [3]XIANG Tianzhu, GAO Rongrong, YAN Li, XU Zhenliang. Region Feature Based Multi-scale Fusion Method for Thermal Infrared and Visible Images[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 911-917. DOI: 10.13203/j.whugis20141007
    [4]ZHANG Lifu, YANG Hang, FANG Conghui, PAN Mao. Thermal Infrared Target Recognition Using Multi-scale Fractal Model[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 339-342.
    [5]YING Shen, LI Lin, GAO Yurong. Pedestrian Simulation in Urban Space Based on Visibility Analysis and Agent Techniques[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1367-1370.
    [6]XU Hanqiu, ZHANG Tiejun, LI Chunhua. Cross Comparison of Thermal Infrared Data Between ASTER and Landsat ETM~+ Sensors[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 936-940.
    [7]ZHU Zhongmin, GONG Wei, YU Juan, TIAN Liqiao. Applicability Analysis of Transformation Models for Aerosol Optical Depth and Horizontal Visibility[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1086-1090.
    [8]MAO Yue, SONG Xiaoyong, FENG Laiping. Visibility Analysis of X-ray Pulsar Navigation[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 222-225.
    [9]YANG Guijun, LIU Qinhuo, LIU Qiang, GU Xingfa. Fusion of Visible and Thermal Infrared Remote Sensing Data Based on GA-SOFM Neural Network[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 786-790.
    [10]GONG Shengrong, YANG Shanchao. A Visible Watermarking Algorithm Holding Image Content[J]. Geomatics and Information Science of Wuhan University, 2006, 31(9): 757-760.
  • Cited by

    Periodical cited type(2)

    1. 徐辛超,高阳. 融合跳跃连接网络与双重注意力机制的可见光与红外遥感影像匹配方法. 地球信息科学学报. 2025(03): 766-783 .
    2. 姚国标,张成成,龚健雅,张现军,李兵. 非线性尺度空间改进的光学与SAR影像自动配准. 武汉大学学报(信息科学版). 2024(12): 2249-2260 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return