CAO Wen, LI Runsheng. Road Intersections Detection Using Deformable Part Models on Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 413-419. DOI: 10.13203/j.whugis20150203
Citation: CAO Wen, LI Runsheng. Road Intersections Detection Using Deformable Part Models on Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 413-419. DOI: 10.13203/j.whugis20150203

Road Intersections Detection Using Deformable Part Models on Remote Sensing Image

More Information
  • Author Bio:

    CAO Wen, PhD, associate professor, specializes in photogrammetry and remote sensing and remote sensing image processing. E-mail: speechofsilva@126.com

  • Corresponding author:

    LI Runsheng, PhD, lecturer. E-mail: xdlxy2171li@163.com

  • Received Date: March 05, 2016
  • Published Date: March 04, 2018
  • With the rapid development of high-resolution remote sensors, how to rapidly, automatically and accurately extract road intersections using high-resolution remote sensing images has become a focus which draws attention in the academic field and several management departments. The current methods of road networks extraction can be divided into two types. The first kind method is to construct road networks according as road intersections computation on the basis of road extraction, but it exists the defect and deficiency of full automatic and suitability. The second kind method is to construct road networks according as road extraction on the basis of road intersections extraction, but it is almost appropriated for low-resolution remote sensing image. Therefore, in order to solve the problem of geometric position detection and geometric shape type identification of road intersections in high-resolution remote sensing images, this paper proposes a road intersections detecting method based on the deformable part models:Firstly, the image features of road intersections are studied in high-resolution remote sensing image; Secondly, road intersection is regarded as a object which is made up of root and many parts, meanwhile, the model parameters of road intersections are obtained through feature extraction and model training using the deformable part models; Finally, the geometric position and geometric shape type of road intersections are obtained using sliding windows matching method. The result of simulation and experiment show that the new method can not only automatically and accurately detect the location of road intersections, but also achieve the geometric shape type of road intersections. Research in this method will effectively improve work efficiency of road network topology construction.
  • [1]
    李军, 秦其明.利用浮动车数据提取停车场位置[J].武汉大学学报·信息科学版, 2013, 38(5):599-603 http://ch.whu.edu.cn/CN/abstract/abstract2637.shtml

    Li Jun, Qin Qiming. Parking Lot Extraction Method Based on Floating Car Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5):599-603 http://ch.whu.edu.cn/CN/abstract/abstract2637.shtml
    [2]
    秦其明, 王洪庆.海洋遥感信息时空数据模型的建立[J].海洋科学进展, 2004, 22(B10):204-210 http://www.cqvip.com/qk/91338A/2004B10/11738373.html

    Qin Qiming, Wang Hongqing. Establishment of Marine Remote Sensing Spatio-Temporal Data Model[J]. Advances in Marine Science, 2004, 22(B10):204-210 http://www.cqvip.com/qk/91338A/2004B10/11738373.html
    [3]
    李小文.编制大数据时代的大地图, 遥感可先行[J].科技导报, 2014, 18:1-3 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kjdb201418002&dbname=CJFD&dbcode=CJFQ

    Li Xiaowen.Preparation of a Large Map of Big Data, Remote Sensing in Advance[J].Science & Technology Review, 2014, 18:1-3 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kjdb201418002&dbname=CJFD&dbcode=CJFQ
    [4]
    张伟伟, 毛政元.一种面向高空间分辨率遥感影像的路口自动定位新方法[J].国土资源遥感2012, 1(3):13-16 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gtyg201201002&dbname=CJFD&dbcode=CJFQ

    Zhang Weiwei, Mao Zhengyuan. A New Approach to Automatic Positioning of Road Junctions in High Spatial Resolution Remotely Sensed Imagery[J]. Remote Sensing for Land & Resources, 2012, 1(3):13-16 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gtyg201201002&dbname=CJFD&dbcode=CJFQ
    [5]
    雷小奇, 王卫星, 赖均.一种基于形状特征进行高分辨率遥感影像道路提取方法[J].测绘学报. 2009, 38(5):457-464 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb200905016&dbname=CJFD&dbcode=CJFQ

    Lei Xiaoqi, Wang Weixin, Lai Jun. A Method of Road Extraction from High-Resolution Remote Sensing Images Based on Shape Features[J].Acta Geodaetica et Cartographica Sinica, 2009, 38(5):457-464 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb200905016&dbname=CJFD&dbcode=CJFQ
    [6]
    唐伟, 赵书河.基于GVF和Snake模型的高分辨率遥感图像四元数空间道路提取[J].遥感学报, 2011, 15(5):1046-1052 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ygxb201105023&dbname=CJFD&dbcode=CJFQ

    Tang Wei, Zhao Shuhe. Road Extraction in Quaternion Space from High Spatial Resolution Remotely Sensed Images Basing on GVF Snake Model[J]. Journal of Remote Sensing, 2011, 15(5):1046-1052 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ygxb201105023&dbname=CJFD&dbcode=CJFQ
    [7]
    吴亮, 胡云安.膨胀系数可调的Balloon Snake方法在道路轮廓提取中的应用[J].测绘学报, 2011, 40(1):71-77 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb201101017&dbname=CJFD&dbcode=CJFQ

    Wu Liang, Hu Yunan. Balloon Snake with Adjustable Expansion Coefficient in Road Contour Extraction[J].Acta Geodaetica et Cartographica Sinica, 2011, 40(1):71-77 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb201101017&dbname=CJFD&dbcode=CJFQ
    [8]
    ChiangY Y, Knoblock C A, Shahabi C, et al. Automatic and Accurate Extraction of Road Intersections from Raster Maps[J]. Geoinformatica, 2009, 13(2):121-157 doi: 10.1007/s10707-008-0046-3
    [9]
    Ravanbakhsh M, Heipke C, Pakzad K. Knowledge-Based Road Junction Extraction from High resolution Aerial Images[M]. Paris, France:Urban Remote Sensing Joint Event, 2007
    [10]
    Ravanbakhsh M, Heipke C, Pakzad K. Road Junction Extraction from High Resolution Aerial Imagery[J]. Photogramm, 2008, 23(124):405-423 doi: 10.1111/phor.2008.23.issue-124
    [11]
    FelzenszwalbP, McAllester D. The Generalized A* Architecture[J]. Journal of Artificial Intelligence Research, 2007, 29:153-190
    [12]
    Felzenszwalb P, Mcallester D, Ramanan D. ADiscriminatively Trained, Multiscale, Deformable Part Model[C]. IEEE Conference on Computer Vision and Pattern Recognition, New York, 2008
    [13]
    Felzenszwalb P F, Huttenlocher D P. DistanceTransforms of Sampled Functions[J]. Cornell Computing & Information Science, 2004, 8(19):415-428
    [14]
    Everingham M, Gool L V, Williams C K I, et al. The Pascal Visual Object Classes (VOC) Challenge[J].International Journal of Computer Vision, 2010, 88(2):303-338 doi: 10.1007/s11263-009-0275-4
    [15]
    王阳生. 基于模型约束的道路交又口自动识别方法研究[D]. 武汉: 武汉大学, 2005 http://cdmd.cnki.com.cn/Article/CDMD-10486-2006034397.htm

    Wang Yangsheng. Automated Road Junction Recognition Basedon Model Restriction[D]. Wuhan: Wuhan University, 2005 http://cdmd.cnki.com.cn/Article/CDMD-10486-2006034397.htm
  • Related Articles

    [1]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [2]GENG Jianghui, YAN Zhe, WEN Qiang. Multi-GNSS Satellite Clock and Bias Product Combination: The Third IGS Reprocessing Campaign[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1070-1081. DOI: 10.13203/j.whugis20230071
    [3]LIU Mingliang, AN Jiachun, WANG Zemin, ZHANG Baojun, SONG Xiangyu. Performance Analysis of BDS-3 Multi-frequency Pseudorange Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 902-910. DOI: 10.13203/j.whugis20200714
    [4]YUAN Haijun, ZHANG Zhetao, HE Xiufeng, XU Tianyang, XU Xueyong. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. DOI: 10.13203/j.whugis20200517
    [5]ZHOU Ren-yu, HU Zhi-gang, CAI Hong-liang, ZHAO Zhen, RAO Yong-nan, CHEN Liang, ZHAO Qi-le. Analysis of Pseudorange and Carrier Ranging Deviation of BDS-3 Using Parabolic Directional Antenna[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1298-1308. DOI: 10.13203/j.whugis20200182
    [6]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [7]ZOU Xuan, LI Zongnan, CHEN Liang, LI Min, TANG Weiming, SHI Chuang. Modeling BeiDou IGSO and MEO Satellites Code Pseudorange Variations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1661-1666. DOI: 10.13203/j.whugis20160275
    [8]LI Xin, ZHANG Xiaohong, ZENG Qi, PAN Lin, ZHU Feng. The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062
    [9]LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107
    [10]FAN Lei, ZHONG Shiming, LI Zishen, OU Jikun. Effect of Tracking Stations Distribution on the Estimation of Differential Code Biases by GPS Satellites Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 316-321. DOI: 10.13203/j.whugis20140114
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(30)

Catalog

    Article views PDF downloads Cited by(58)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return