WANG Li, ZHANG Qin, HUANG Guanwen, TIAN Jie. GPS Satellite Clock Bias Prediction Based on Exponential Smoothing Method[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 995-1001. DOI: 10.13203/j.whugis20150089
Citation: WANG Li, ZHANG Qin, HUANG Guanwen, TIAN Jie. GPS Satellite Clock Bias Prediction Based on Exponential Smoothing Method[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 995-1001. DOI: 10.13203/j.whugis20150089

GPS Satellite Clock Bias Prediction Based on Exponential Smoothing Method

Funds: 

The Major State Basic Research Development Program(973 Program) of China 2014CB744700

the National Natural Science Foundation of China 41104019

the National Natural Science Foundation of China 41274005

the National Natural Science Foundation of China 41202189

the National Natural Science Foundation of China 41304033

the Project of State Land Resources Survey of China 1212011220186

the Project of State Land Resources Survey of China 1212011220142

the Project of State Land Resources Survey of China 12120114079101

the Fundamental Research Founds for the Central Universities 310826172006

the Fundamental Research Founds for the Central Universities 310826172202

the Fundamental Research Founds for the Central Universities 310826173101

More Information
  • Author Bio:

    WANG Li, PhD, associate professor, specializes GNSS precise positioning and deformation monitoring. E-mail: wangli@chd.edu.cn

  • Corresponding author:

    ZHANG Qin, PhD, professor. E-mail:zhangqinle@263.net.cn

  • Received Date: July 19, 2015
  • Published Date: July 04, 2017
  • A new method of GPS satellite clock bias prediction based on exponential smoothing method (ESM) is presented in this paper. This new method can develop the prediction model successfully by using a small amount of data and has the advantages of easier calculation and convenience in operation. And the good results can still be acquired by this new method when the relevant historical data are absent or the changing trend of data is unobvious or unstable. By contrast with the quadratic polynomial model (QPM) and gray system model (GM) which are usually used in GPS satellite clock bias prediction, the calculating and analyzing results indicated that the ESM can be used in the medium-term and short-term prediction of GPS satellite clock bias and the prediction precision can reach up to nanosecond (ns) level. The prediction results of ESM are better than QPM but on the same level with GM when a small amount of data is used to establish the prediction model. And in the mean time, the ESM can also be used in the long-term prediction of GPS satellite clock bias and the prediction precision can reach up to microsecond (μs) level which is on the same level with GM.
  • [1]
    张清华, 隋立芬, 牟忠凯.基于小波与ARMA模型的卫星钟差预报方法[J].大地测量与地球动力学, 2010, 30(6):100-104 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201006022.htm

    Zhang Qinghua, Sui Lifen, Mu Zhongkai. A GPS Precise Clock Errors Prediction Model Based on Wavelet and ARMA[J].Journal of Geodesy and Geodynamics, 2010, 30(6):100-104 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201006022.htm
    [2]
    戴伟, 焦文海, 李维鹏, 贾小林. GPS Block ⅡR(M)星载原子钟钟差预报研究[J].大地测量与地球动力学, 2009, 29(4):111-115 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200904025.htm

    Dai Wei, Jiao Wenhai, Li Weipeng and Jia Xiaolin. Research on Clock Error Prediction for Atomic Clocks Loaded on GPS Block ⅡR(M) Satellite Clocks[J]. Journal of Geodesy and Geodynamics, 2009, 29(4):111-115 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200904025.htm
    [3]
    焦文海. 卫星导航系统坐标基准建立问题的研究[D]. 上海: 中国科学院上海天文台, 2003: 75-80 http://cdmd.cnki.com.cn/article/cdmd-80022-2005011194.htm

    Jiao Wenhai. Researches on the Realization of Satellite Navigation Coordinate Reference System[D]. Shanghai:Shanghai Astronomical Observatory, Chinese Academy of Sciences, 2003:75-80 http://cdmd.cnki.com.cn/article/cdmd-80022-2005011194.htm
    [4]
    崔先强, 焦文海.灰色系统模型在卫星钟差预报中的应用[J].武汉大学学报·信息科学版, 2005, 30(5):447-450 http://ch.whu.edu.cn/CN/abstract/abstract2193.shtml

    Cui Xianqiang, Jiao Wenhai. Grey System Model for the Satellite Clock Error Predicting[J]. Geomatics and Information Science of Wuhan University, 2005, 30(5):447-450 http://ch.whu.edu.cn/CN/abstract/abstract2193.shtml
    [5]
    黄观文. 星载原子钟质量评价及精密钟差算法研究[D]. 西安: 长安大学, 2012: 33-66 http://cdmd.cnki.com.cn/Article/CDMD-10710-1013017231.htm

    Huang Guanwen. Research on Algorithms of Precise Clock Offset and Quality Evaluation of GNSS Satellite Clock[D]. Xi'an:Chang'an University, 2012:33-66 http://cdmd.cnki.com.cn/Article/CDMD-10710-1013017231.htm
    [6]
    郭海荣, 杨生, 杨元喜, 等.基于卫星双向时间频率传递进行钟差预报的方法研究[J].武汉大学学报·信息科学版, 2007, 32(1):43-46 http://ch.whu.edu.cn/CN/abstract/abstract1809.shtml

    Guo Hairong, Yang Sheng, Yang Yuanxi, et al. Numerical Prediction Methods for Clock Difference Based on Two-way Satellite Time and Frequency Transfer Data[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1):43-46 http://ch.whu.edu.cn/CN/abstract/abstract1809.shtml
    [7]
    席超, 蔡成林, 李思敏, 等.基于ARMA模型的导航卫星钟差长期预报[J].天文学报, 2014, 55(1):78-89 http://www.cnki.com.cn/Article/CJFDTOTAL-TWXB201401007.htm

    Xi Chao, Cai Chenglin, Li Simin, et al. Long-term Satellite Clock Bias Prediction Based on ARMA Model[J]. Acta Astronomica Sinica, 2014, 55(1):78-89 http://www.cnki.com.cn/Article/CJFDTOTAL-TWXB201401007.htm
    [8]
    郑作亚, 陈永奇, 卢秀山.灰色模型修正及其在实时GPS卫星钟差预报中的应用研究[J].天文学报, 2008, 49(3):306-320 http://www.cnki.com.cn/Article/CJFDTOTAL-TWXB200803011.htm

    Zheng Zuoya, Chen Yongqi, Lu Xiushan. An Improved Grey Model for the Prediction of Real-time GPS Satellite Clock Bias[J]. Acta Astronomica Sinica, 2008, 49(3):306-320 http://www.cnki.com.cn/Article/CJFDTOTAL-TWXB200803011.htm
    [9]
    郑作亚, 卢秀山.几种GPS卫星钟差预报方法比较及精度分析[J].山东科技大学学报, 2008, 27(4):6-11 http://www.cnki.com.cn/Article/CJFDTOTAL-MENC201401272.htm

    Zheng Zuoya, Lu Xiushan. Comparison and Precision Analysis of Several GPS Satellite Clock Bias Prediction Methods[J]. Journal of Shandong University of Science and Technology(natural science edition), 2008, 27(4):6-11 http://www.cnki.com.cn/Article/CJFDTOTAL-MENC201401272.htm
    [10]
    路晓峰, 杨志强, 贾小林, 等.灰色系统理论的优化方法及其在卫星钟差预报中的应用[J].武汉大学学报·信息科学版, 2008, 33(5):492-495 http://ch.whu.edu.cn/CN/abstract/abstract1584.shtml

    Lu Xiaofeng, Yang Zhiqiang, Jia Xiaolin, et al. Parameter Optimization Method of Gray System Theory for the Satellite Clock Error Predicating[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5):492-495 http://ch.whu.edu.cn/CN/abstract/abstract1584.shtml
    [11]
    Stein S. Kalman Filter Analysisof Precision Clocks with Real-time Parameter Estimation[C]. The 43rd Annual Frequency Control Symposium, Denver, USA, 1989 https://www.researchgate.net/publication/3549178_Kalman_filter_analysis_of_precision_clocks_with_real-time_parameter_estimation
    [12]
    Stein S, Evans J. The Application of Kalman Filters and ARIMA Models to the Study of Time Prediction Errors of Clocks for Use in the Defense Communication System (DCS)[C]. The 44th Annual Frequency Control Symposium, Baltimore, MD, 1990 http://www.researchgate.net/publication/3490265_The_application_of_Kalman_filters_and_ARIMA_models_to_the_study_oftime_prediction_errors_of_clocks_for_use_in_the_Defense_CommunicationSystem_(DCS)
    [13]
    Epstein M, Freed G, Rajan J. GPS ⅡR RubidiumClocks:In-orbit Performance Aspects[C]. Proceedings of the 35th Annual Precise Time and Time Interval (PTTI) Meeting, San Diego, California, USA, 2003 https://www.researchgate.net/publication/228518322_GPS_IIR_rubidium_clocks_In-orbit_performance_aspects
    [14]
    朱祥维, 肖华, 雍少为, 等.卫星钟差预报的Kalman算法及其性能分析[J].宇航学报, 2008, 29(3):966-970 http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200803044.htm

    Zhu Xiangwei, Xiao Hua, Yong Shaowei, et al. The Kalman Algorithm Used for Satellite Clock Offset Prediction and Its Performance Analysis[J]. Journal of Astronautics, 2008, 29(3):966-970 http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200803044.htm
    [15]
    黄观文, 张勤, 王继刚. GPS卫星钟差的估计与预报研究[J].大地测量与地球动力学, 2009, 29(6):118-122 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200906026.htm

    Huang Guanwen, Zhang Qin, Wang Jigang. Research on Estimation and Prediction of GPS Satellite Clock Error[J]. Journal of Geodesy and Geodynamics, 2009, 29(6):118-122 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200906026.htm
    [16]
    黄观文, 张勤, 许国昌, 等.基于频谱分析的IGS精密星历卫星钟差精度分析研究[J].武汉大学学报·信息科学版, 2008, 33(5):496-499 http://ch.whu.edu.cn/CN/abstract/abstract1585.shtml

    Huang Guanwen, Zhang Qin, Xu Guochang, et al. IGS Precise Satellite Clock Model Fitting and Its Precision by Using Spectral Analysis Method[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5):496-499 http://ch.whu.edu.cn/CN/abstract/abstract1585.shtml
    [17]
    雷雨, 赵丹宁, 李变, 等.基于小波变换和最小二乘支持向量机的卫星钟差预报[J].武汉大学学报·信息科学版, 2014, 39(7):815-819 http://ch.whu.edu.cn/CN/abstract/abstract3026.shtml

    Lei Yu, Zhao Danning, Li Bian, et al. Prediction of Satellite Clock Bias Based on Wavelet Transform and Least Squares Support Vector Machines[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7):815-819 http://ch.whu.edu.cn/CN/abstract/abstract3026.shtml
    [18]
    王宇谱, 吕志平, 崔阳, 等.利用遗传小波神经网络预报导航卫星钟差[J].武汉大学学报·信息科学版, 2014, 39(7):809-814 http://ch.whu.edu.cn/CN/abstract/abstract3025.shtml

    Wang Yupu, Lv Zhiping, Cui Yang, et al. Predicting Navigation Satellite Clock Bias Using a Genetic Wavelet Neural Network[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7):809-814 http://ch.whu.edu.cn/CN/abstract/abstract3025.shtml
    [19]
    刘造保, 徐卫亚, 张开普, 等.基于改进指数平滑法的岩体边坡变形预测[J].河海大学学报(自然科学版), 2009, 37(3):313-316 http://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200903016.htm

    Liu Zaobao, Xu Weiya, Zhang Kaipu, et al. Prediction of Rock Slope Deformation Based on Optimized Exponential Smoothing Method[J]. Journal of Hohai University (Natural Sciences), 2009, 37(3):313-316 http://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200903016.htm
    [20]
    陈湛匀.可行而有效的指数平滑法[J].外国经济与管理, 1985, 7(8):36-38 http://www.cnki.com.cn/Article/CJFDTOTAL-WGJG198508019.htm

    Chen Zhanyun. Feasible and Effective Exponential Smoothing Method[J]. Foreign Economics & Management, 1985, 7(8):36-38 http://www.cnki.com.cn/Article/CJFDTOTAL-WGJG198508019.htm
    [21]
    门玉明.指数平滑法及其在滑坡预报中的应用[J].水文地质工程地质, 1997, 24(1):16-18 http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG199701005.htm

    Men Yuming. Exponential Smoothing Method and Its Application in Landslide Prediction[J]. Hydrogeology & Engineering Geology, 1997, 24(1):16-18 http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG199701005.htm
    [22]
    刘立强.怎样推导指数平滑法预测模型的参数计算公式[J].中国统计, 1993(1):20-22 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTJ199301009.htm

    Liu Liqiang. How to Deduce the Computational Formula about the Parameters of the Exponential Smoothing Forecasting Model[J]. China Statistics, 1993(1):20-22 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTJ199301009.htm
    [23]
    陈玉祥.指数平滑法[J].汽车配件, 1984(4):62-64 http://www.cnki.com.cn/Article/CJFDTOTAL-WSGL201006031.htm

    Chen Yuxiang. Exponential Smoothing Method[J]. Automobile & Parts Technology, 1984(4):62-64 http://www.cnki.com.cn/Article/CJFDTOTAL-WSGL201006031.htm
  • Related Articles

    [1]WU Jiaqi, JIANG Yonghua, SHEN Xin, LI Beibei, PAN Shenlin. Satellite Video Motion Detection Supported by Decision Tree Weak Classification[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1182-1190. DOI: 10.13203/j.whugis20180094
    [2]FU Zisheng, LI Qiuping, LIU Lin, ZHOU Suhong. Identification of Urban Network Congested Segments Using GPS Trajectories Double-Clustering Method[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1264-1270. DOI: 10.13203/j.whugis20150036
    [3]DENG Min, CHEN Ti, YANG Wentao. A New Method of Modeling Spatio-temporal Sequence by Considering Spatial Scale Characteristics[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1625-1632. DOI: 10.13203/j.whugis20130842
    [4]FU Zhongliang, LIU Siyuan. MR-tree with Voronoi Diagrams for Parallel Spatial Queries[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1490-1494.
    [5]HE Chu, LIU Ming, XU Lianyu, LIU Longzhu. A Hierarchical Classification Method Based on Feature Selection and Adaptive Decision Tree for SAR Image[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 46-49.
    [6]ZHANG Lu, GAO Zhihong, LIAO Mingsheng, LI Xinyan. Estimating Urban Impervious Surface Percentage with Multi-source Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1212-1216.
    [7]HAN Tao, XU Xiaotao, XIE Yaowen. Automated Construction and Classification of Decision Tree Classifier Based on Single-Temporal MODIS Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 191-194.
    [8]LIAO Mingsheng, JIANG Liming, LIN Hui, YANG Limin. Estimating Urban Impervious Surface Percent Using Boosting as a Refinement of CART Analysis[J]. Geomatics and Information Science of Wuhan University, 2007, 32(12): 1099-1102.
    [9]YU Xin, ZHENG Zhaobao, YE Zhiwei, TIAN Liqiao. Texture Classification Based on Tree Augmented Naive Bayes Classifier[J]. Geomatics and Information Science of Wuhan University, 2007, 32(4): 287-289.
    [10]GUO Jing, LIU Guangjun, DONG Xurong, GUO Lei. 2-Level R-tree Spatial Index Based on Spatial Grids and Hilbert R-tree[J]. Geomatics and Information Science of Wuhan University, 2005, 30(12): 1084-1088.
  • Cited by

    Periodical cited type(13)

    1. 陈月,王磊,池深深,王羽,戚鑫鑫,朱尚军. 基于SBAS-InSAR和CNN-GRU模型的采动村庄地表沉降监测预计. 金属矿山. 2025(02): 138-144 .
    2. 何毅,姚圣,陈毅,闫浩文,张立峰. ConvLSTM神经网络的时序InSAR地面沉降时空预测. 武汉大学学报(信息科学版). 2025(03): 483-496 .
    3. 倪尔瑞,张建新,邱明剑,权力奥,朱晓峻. 基于SBAS-InSAR技术的淮北市地表沉降监测分析. 北京测绘. 2024(03): 312-317 .
    4. 吴启琛,于瑞鹏,王丽,赵乙泽,范开放. 利用Sentinel-1的山东枣庄高新区地面沉降监测与分析. 地理空间信息. 2024(06): 80-83 .
    5. 杨芳,丁仁军,李勇发. 基于SBAS-InSAR技术的金沙江流域典型滑坡时空演化特征分析. 测绘通报. 2024(11): 102-107 .
    6. 祝杰,李瑜,师宏波,刘洋洋,韩宇飞,邵银星,王坦. 鹤岗煤矿区地面沉降时空特征InSAR时间序列监测研究. 中国地震. 2023(03): 596-608 .
    7. 柴龙飞,魏路,张震. 基于SBAS-InSAR的安徽省宿州市埇桥区2019—2022年地面沉降监测及影响因素分析研究. 安徽地质. 2023(04): 348-352 .
    8. 祝杰,韩宇飞,王坦,李瑜,王阅兵,师宏波,刘洋洋,樊俊屹,邵银星. 2017年九寨沟M_S7.0地震同震地表三维形变场解算研究. 中国地震. 2022(02): 348-359 .
    9. 吴毅彬,葛红斌,刘光庆,刘海旺. 基于MT-InSAR技术的厦门新机场填海区沉降监测. 工程勘察. 2021(02): 57-61 .
    10. 翟振起. 基于InSAR沉降监测技术的城市供水管线安全监测系统开发. 水利科学与寒区工程. 2021(01): 103-106 .
    11. 廖明生,王茹,杨梦诗,王楠,秦晓琼,杨天亮. 城市目标动态监测中的时序InSAR分析方法及应用. 雷达学报. 2020(03): 409-424 .
    12. 熊寻安,王明洲,龚春龙. MT-InSAR技术监测水库土石坝表面变形研究. 测绘地理信息. 2019(05): 78-81 .
    13. 王茹,杨天亮,杨梦诗,廖明生,林金鑫,张路. PS-InSAR技术对上海高架路的沉降监测与归因分析. 武汉大学学报(信息科学版). 2018(12): 2050-2057 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return