Citation: | TU Yi, LU Yang, ZHANG Zizhan, SHI Hongling, DU Zongliang, GAO Chunchun, ZHU Chuandong. Large-scale Time-variable Unified Gravity Field Model Using GRACE Data[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1100-1106. DOI: 10.13203/j.whugis20140303 |
[1] |
Tapley B D, Bettadpur S, Watkins M, et al. The Gravity Recovery and Climate Experiment: Mission Overview and Early Results[J]. Geophys Res Lett, 2004, 31(9):L09607 http://cn.bing.com/academic/profile?id=1588827410&encoded=0&v=paper_preview&mkt=zh-cn
|
[2] |
Wahr J, Swenson S, Zlotnicki V, et al. Time-variable Gravity from GRACE: First Results[J]. Geophys Res Lett, 2004, 31:L11501 http://cn.bing.com/academic/profile?id=2046930921&encoded=0&v=paper_preview&mkt=zh-cn
|
[3] |
Zhang Zizhan. Theory and Applications of Satellite Altimetry and Gravity Data Assimilation [D]. Wuhan:Institute of Geodesy and Geophysics, Chinese Academy of Sciences, 2008
|
[4] |
Bruinsma S, Lemoine J M, Biancale R, et al. CNES/GRGS 10-day Gravity Field Models (Release 2) and Their Evaluation[J]. Adv Space Res, 2010, 45:587-601 doi: 10.1016/j.asr.2009.10.012
|
[5] |
Bettadpur S. UTCSR Level-2 Processing Standards Document for Level-2 Product Release 0005[OL]. ftp://podaac.jpl.nasa.gov/allData/grace/docs/L2-CSR0005_ProcStd_v4.0.pdf, 2012
|
[6] |
Swenson S, Wahr J. Post-processing Removal of Correlated Errors in GRACE Data[J]. Geophys Res Lett, 2006, 33: L08402 http://cn.bing.com/academic/profile?id=2060576920&encoded=0&v=paper_preview&mkt=zh-cn
|
[7] |
Zhang Z Z, Chao B F, Lu Y, et al. An Effective Filtering for GRACE Time-variable Gravity: Fan Filter[J]. Geophys Res Lett, 2009, 36:L17311 doi: 10.1029/2009GL039459
|
[8] |
Cheng M K, Tapley B D. Variations in the Earth's oblateness During the Past 28 Years[J]. J Geophys Res, 2004, 109:B09402 http://cn.bing.com/academic/profile?id=2031705591&encoded=0&v=paper_preview&mkt=zh-cn
|
[9] |
Whitehouse P L, Bentley M J, Milne G A, et al. A New Glacial Isostatic Adjustment Model for Antarctica: Calibrated and Tested Using Observations of Relative Sea-level Change and Present-day Uplift Rates[J]. Geophys J Int, 2012, 190:1 464-1 482 doi: 10.1111/gji.2012.190.issue-3
|
[10] |
Simpson M J R, Milne G A, Huybrechts P, et al. Calibrating a Glaciological Model of the Greenland Ice Sheet from the Last Glacial Maximum to Present-day Using Field Observations of Relative Sea Level and Ice Extent[J]. Quaternary Sci Rev, 2009, 28:1 631-1 657 doi: 10.1016/j.quascirev.2009.03.004
|
[11] |
Rangelova E, Sideris M G, Kim J W. On the Capabilities of the Multi-channel Singular Spectrum Method for Extracting the Main Periodic and Non-periodic Variability from Weekly GRACE Data[J]. J of Geodyn, 2012, 54: 64-78 doi: 10.1016/j.jog.2011.10.006
|
[12] |
Li Jin. Detection of Coseismic Changes Associated with Large Earthquakes by Gravity Gradient Changes from GRACE[D]. Wuhan: Wuhan University, 2011
|
[13] |
Sibylle V, Holger S, Jürgen M. Inter-annual Water Mass Variations from GRACE in Central Siberia[J]. J Geod, 2013, 87:287-299 doi: 10.1007/s00190-012-0597-9
|
[14] |
Chen J L, Wilson C R, Tapley B D. Satellite Gravity Measurements Confirm Accelerated Melting of Greenland Ice Sheet[J]. Science, 2006, 313(5 795): 1 958-1 960
|
[15] |
Velicogna I. Increasing Rates of Ice Mass Loss from the Greenland and Antarctic Ice Sheets Revealed by GRACE[J]. Geophys Res Lett, 2009, 36:L19503 doi: 10.1029/2009GL040222
|
[16] |
Oliver B. On the Computation of Mass-change Trends from GRACE Gravity Field Time-series[J]. J Geodyn, 2012, 61:120-128 doi: 10.1016/j.jog.2012.03.007
|
[17] |
Svendsen P L, Andersen O B, Nielsen A A. Acceleration of the Greenland Ice Sheet Mass Loss as Observed by GRACE: Confidence and Sensitivity[J]. Earth Planet Sci Lett, 2013, 364:24-29 doi: 10.1016/j.epsl.2012.12.010
|
[18] |
Han S C, Shum C K, Matsumoto K. GRACE Observations of M2 and S2 Ocean Tides Underneath the Filchner-Ronne and Larsen Ice Shelves, Antarctica[J]. Geophys Res Lett, 2005, 32: L20311 doi: 10.1029/2005GL024296
|
[19] |
Ray R D, Luthcke S B. Tide Model Errors and GRACE Gravimetry: Towards a More Realistic Assessment[J]. Geophys J Int, 2006, 167:1 055-1 059 doi: 10.1111/gji.2006.167.issue-3
|
[20] |
Chen J L, Wilson C R, Tapley B D, et al. GRACE Detects Coseismic and Postseismic Deformation from the Sumatra-Andaman Earthquake[J]. Geophys Res Lett, 2007, 34:L13302 http://cn.bing.com/academic/profile?id=2141155811&encoded=0&v=paper_preview&mkt=zh-cn
|
[21] |
Linage C de, Rivera L, Hinderer J, et al. Separation of Coseismic and Postseismic Gravity Changes for the 2004 Sumatra-Andaman Earthquake from 4.6 yr of GRACE Observations and Modelling of the Coseismic Change by Normal-modes Summation[J]. Geophys J Int, 2009, 176(3):695-714 doi: 10.1111/gji.2009.176.issue-3
|
[22] |
Wang Lei, Shum C K, Frederik J S, et al. Coseismic Slip of the 2010 Mw 8.8 Great Maule, Chile, Earthquake Quantified by the Inversion of GRACE Observations[J]. Earth Planet Sci Lett, 2012, 335-336:167-179 http://cn.bing.com/academic/profile?id=2126113995&encoded=0&v=paper_preview&mkt=zh-cn
|
[23] |
Wang L, Shum C K, Simons F J, et al. Coseismic and Postseismic Deformation of the 2011 Tohoku-Oki Earthquake Constrained by GRACE Gravimetry[J]. Geophys Res Lett, 2012, 39:L07301 http://cn.bing.com/academic/profile?id=1657023268&encoded=0&v=paper_preview&mkt=zh-cn
|
[24] |
Chen J L, Wilson C R, Tapley B D, et al. 2005 Drought Event in the Amazon River Basin as Measured by GRACE and Estimated by Climate Models[J]. J Geophys Res, 2009, 114:B05404 http://cn.bing.com/academic/profile?id=2160726523&encoded=0&v=paper_preview&mkt=zh-cn
|
[25] |
Chen J L, Wilson C R, Tapley B D. The 2009 Exceptional Amazon Flood and Interannual Terrestrial Water Storage Change Observed by GRACE[J]. Water Resour Res, 2010, 46:W12526 http://cn.bing.com/academic/profile?id=1500296370&encoded=0&v=paper_preview&mkt=zh-cn
|
[26] |
Feng Wei, Jean-Michel L, Zhong Min, et al. Terrestrial Water Storage Changes in the Amazon Basin Measured by GRACE During 2002-2010[J]. Chinese J Geophys(in Chinese), 2012, 55(3): 814-821 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201203010.htm
|
[27] |
Lee H, Shum C K, Howat I M, et al, Continuously Accelerating Ice Loss over Amundsen Sea Catchment, West Antarctica, Revealed by Integrating Altimetry and GRACE Data[J]. Earth Planet Sci Lett, 2012, 321-322:74-80 http://www.docin.com/p-859746434.html
冯伟, Jean-Michel L, 钟敏, 等.利用重力卫星GRACE监测亚马逊流域2002-2010年的陆地水变化[J].地球物理学报, 2012, 55(3): 814-821 http://www.docin.com/p-859746434.html
|
[28] |
Velicogna I, Wahr J. Time-variable Gravity Observations of Ice Sheet Mass Balance: Precision and Limitations of the GRACE Satellite Data[J]. Geophys Res Lett, 2013, 40: 3 055-3 063 doi: 10.1002/grl.50527
|
[29] |
Ogawa R, Chao B F, Heki K, et al. Acceleration Signal in GRACE Time-variable Gravity in Relation to Interannual Hydrological Changes[J]. Geophys J Int, 2011, 184:673-679 doi: 10.1111/gji.2011.184.issue-2
|
[30] |
Syed T H, Famiglietti J S, Rodell M, et al. Analysis of Terrestrial Water Storage Changes from GRACE and GLDAS[J]. Water Resour Res, 2008, 44:W02433 http://cn.bing.com/academic/profile?id=2127393309&encoded=0&v=paper_preview&mkt=zh-cn
|
[1] | Gan Wenxia, Pan Junjie, Geng Jing, Wang Huini, Hu Xiaodi. A Fusion Method for Infrared and Visible Images in All-weather Road Scenes[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240173 |
[2] | SONG Zhina, SUI Haigang, LI Yongcheng. A Survey on Ship Detection Technology in High-Resolution Optical Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1703-1715. DOI: 10.13203/j.whugis20200481 |
[3] | XIANG Tianzhu, GAO Rongrong, YAN Li, XU Zhenliang. Region Feature Based Multi-scale Fusion Method for Thermal Infrared and Visible Images[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 911-917. DOI: 10.13203/j.whugis20141007 |
[4] | ZHANG Lifu, YANG Hang, FANG Conghui, PAN Mao. Thermal Infrared Target Recognition Using Multi-scale Fractal Model[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 339-342. |
[5] | YING Shen, LI Lin, GAO Yurong. Pedestrian Simulation in Urban Space Based on Visibility Analysis and Agent Techniques[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1367-1370. |
[6] | XU Hanqiu, ZHANG Tiejun, LI Chunhua. Cross Comparison of Thermal Infrared Data Between ASTER and Landsat ETM~+ Sensors[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 936-940. |
[7] | ZHU Zhongmin, GONG Wei, YU Juan, TIAN Liqiao. Applicability Analysis of Transformation Models for Aerosol Optical Depth and Horizontal Visibility[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1086-1090. |
[8] | MAO Yue, SONG Xiaoyong, FENG Laiping. Visibility Analysis of X-ray Pulsar Navigation[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 222-225. |
[9] | YANG Guijun, LIU Qinhuo, LIU Qiang, GU Xingfa. Fusion of Visible and Thermal Infrared Remote Sensing Data Based on GA-SOFM Neural Network[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 786-790. |
[10] | GONG Shengrong, YANG Shanchao. A Visible Watermarking Algorithm Holding Image Content[J]. Geomatics and Information Science of Wuhan University, 2006, 31(9): 757-760. |
1. |
徐辛超,高阳. 融合跳跃连接网络与双重注意力机制的可见光与红外遥感影像匹配方法. 地球信息科学学报. 2025(03): 766-783 .
![]() | |
2. |
姚国标,张成成,龚健雅,张现军,李兵. 非线性尺度空间改进的光学与SAR影像自动配准. 武汉大学学报(信息科学版). 2024(12): 2249-2260 .
![]() |