Citation: | TU Yi, LU Yang, ZHANG Zizhan, SHI Hongling, DU Zongliang, GAO Chunchun, ZHU Chuandong. Large-scale Time-variable Unified Gravity Field Model Using GRACE Data[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1100-1106. DOI: 10.13203/j.whugis20140303 |
[1] |
Tapley B D, Bettadpur S, Watkins M, et al. The Gravity Recovery and Climate Experiment: Mission Overview and Early Results[J]. Geophys Res Lett, 2004, 31(9):L09607 http://cn.bing.com/academic/profile?id=1588827410&encoded=0&v=paper_preview&mkt=zh-cn
|
[2] |
Wahr J, Swenson S, Zlotnicki V, et al. Time-variable Gravity from GRACE: First Results[J]. Geophys Res Lett, 2004, 31:L11501 http://cn.bing.com/academic/profile?id=2046930921&encoded=0&v=paper_preview&mkt=zh-cn
|
[3] |
Zhang Zizhan. Theory and Applications of Satellite Altimetry and Gravity Data Assimilation [D]. Wuhan:Institute of Geodesy and Geophysics, Chinese Academy of Sciences, 2008
|
[4] |
Bruinsma S, Lemoine J M, Biancale R, et al. CNES/GRGS 10-day Gravity Field Models (Release 2) and Their Evaluation[J]. Adv Space Res, 2010, 45:587-601 doi: 10.1016/j.asr.2009.10.012
|
[5] |
Bettadpur S. UTCSR Level-2 Processing Standards Document for Level-2 Product Release 0005[OL]. ftp://podaac.jpl.nasa.gov/allData/grace/docs/L2-CSR0005_ProcStd_v4.0.pdf, 2012
|
[6] |
Swenson S, Wahr J. Post-processing Removal of Correlated Errors in GRACE Data[J]. Geophys Res Lett, 2006, 33: L08402 http://cn.bing.com/academic/profile?id=2060576920&encoded=0&v=paper_preview&mkt=zh-cn
|
[7] |
Zhang Z Z, Chao B F, Lu Y, et al. An Effective Filtering for GRACE Time-variable Gravity: Fan Filter[J]. Geophys Res Lett, 2009, 36:L17311 doi: 10.1029/2009GL039459
|
[8] |
Cheng M K, Tapley B D. Variations in the Earth's oblateness During the Past 28 Years[J]. J Geophys Res, 2004, 109:B09402 http://cn.bing.com/academic/profile?id=2031705591&encoded=0&v=paper_preview&mkt=zh-cn
|
[9] |
Whitehouse P L, Bentley M J, Milne G A, et al. A New Glacial Isostatic Adjustment Model for Antarctica: Calibrated and Tested Using Observations of Relative Sea-level Change and Present-day Uplift Rates[J]. Geophys J Int, 2012, 190:1 464-1 482 doi: 10.1111/gji.2012.190.issue-3
|
[10] |
Simpson M J R, Milne G A, Huybrechts P, et al. Calibrating a Glaciological Model of the Greenland Ice Sheet from the Last Glacial Maximum to Present-day Using Field Observations of Relative Sea Level and Ice Extent[J]. Quaternary Sci Rev, 2009, 28:1 631-1 657 doi: 10.1016/j.quascirev.2009.03.004
|
[11] |
Rangelova E, Sideris M G, Kim J W. On the Capabilities of the Multi-channel Singular Spectrum Method for Extracting the Main Periodic and Non-periodic Variability from Weekly GRACE Data[J]. J of Geodyn, 2012, 54: 64-78 doi: 10.1016/j.jog.2011.10.006
|
[12] |
Li Jin. Detection of Coseismic Changes Associated with Large Earthquakes by Gravity Gradient Changes from GRACE[D]. Wuhan: Wuhan University, 2011
|
[13] |
Sibylle V, Holger S, Jürgen M. Inter-annual Water Mass Variations from GRACE in Central Siberia[J]. J Geod, 2013, 87:287-299 doi: 10.1007/s00190-012-0597-9
|
[14] |
Chen J L, Wilson C R, Tapley B D. Satellite Gravity Measurements Confirm Accelerated Melting of Greenland Ice Sheet[J]. Science, 2006, 313(5 795): 1 958-1 960
|
[15] |
Velicogna I. Increasing Rates of Ice Mass Loss from the Greenland and Antarctic Ice Sheets Revealed by GRACE[J]. Geophys Res Lett, 2009, 36:L19503 doi: 10.1029/2009GL040222
|
[16] |
Oliver B. On the Computation of Mass-change Trends from GRACE Gravity Field Time-series[J]. J Geodyn, 2012, 61:120-128 doi: 10.1016/j.jog.2012.03.007
|
[17] |
Svendsen P L, Andersen O B, Nielsen A A. Acceleration of the Greenland Ice Sheet Mass Loss as Observed by GRACE: Confidence and Sensitivity[J]. Earth Planet Sci Lett, 2013, 364:24-29 doi: 10.1016/j.epsl.2012.12.010
|
[18] |
Han S C, Shum C K, Matsumoto K. GRACE Observations of M2 and S2 Ocean Tides Underneath the Filchner-Ronne and Larsen Ice Shelves, Antarctica[J]. Geophys Res Lett, 2005, 32: L20311 doi: 10.1029/2005GL024296
|
[19] |
Ray R D, Luthcke S B. Tide Model Errors and GRACE Gravimetry: Towards a More Realistic Assessment[J]. Geophys J Int, 2006, 167:1 055-1 059 doi: 10.1111/gji.2006.167.issue-3
|
[20] |
Chen J L, Wilson C R, Tapley B D, et al. GRACE Detects Coseismic and Postseismic Deformation from the Sumatra-Andaman Earthquake[J]. Geophys Res Lett, 2007, 34:L13302 http://cn.bing.com/academic/profile?id=2141155811&encoded=0&v=paper_preview&mkt=zh-cn
|
[21] |
Linage C de, Rivera L, Hinderer J, et al. Separation of Coseismic and Postseismic Gravity Changes for the 2004 Sumatra-Andaman Earthquake from 4.6 yr of GRACE Observations and Modelling of the Coseismic Change by Normal-modes Summation[J]. Geophys J Int, 2009, 176(3):695-714 doi: 10.1111/gji.2009.176.issue-3
|
[22] |
Wang Lei, Shum C K, Frederik J S, et al. Coseismic Slip of the 2010 Mw 8.8 Great Maule, Chile, Earthquake Quantified by the Inversion of GRACE Observations[J]. Earth Planet Sci Lett, 2012, 335-336:167-179 http://cn.bing.com/academic/profile?id=2126113995&encoded=0&v=paper_preview&mkt=zh-cn
|
[23] |
Wang L, Shum C K, Simons F J, et al. Coseismic and Postseismic Deformation of the 2011 Tohoku-Oki Earthquake Constrained by GRACE Gravimetry[J]. Geophys Res Lett, 2012, 39:L07301 http://cn.bing.com/academic/profile?id=1657023268&encoded=0&v=paper_preview&mkt=zh-cn
|
[24] |
Chen J L, Wilson C R, Tapley B D, et al. 2005 Drought Event in the Amazon River Basin as Measured by GRACE and Estimated by Climate Models[J]. J Geophys Res, 2009, 114:B05404 http://cn.bing.com/academic/profile?id=2160726523&encoded=0&v=paper_preview&mkt=zh-cn
|
[25] |
Chen J L, Wilson C R, Tapley B D. The 2009 Exceptional Amazon Flood and Interannual Terrestrial Water Storage Change Observed by GRACE[J]. Water Resour Res, 2010, 46:W12526 http://cn.bing.com/academic/profile?id=1500296370&encoded=0&v=paper_preview&mkt=zh-cn
|
[26] |
Feng Wei, Jean-Michel L, Zhong Min, et al. Terrestrial Water Storage Changes in the Amazon Basin Measured by GRACE During 2002-2010[J]. Chinese J Geophys(in Chinese), 2012, 55(3): 814-821 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201203010.htm
|
[27] |
Lee H, Shum C K, Howat I M, et al, Continuously Accelerating Ice Loss over Amundsen Sea Catchment, West Antarctica, Revealed by Integrating Altimetry and GRACE Data[J]. Earth Planet Sci Lett, 2012, 321-322:74-80 http://www.docin.com/p-859746434.html
冯伟, Jean-Michel L, 钟敏, 等.利用重力卫星GRACE监测亚马逊流域2002-2010年的陆地水变化[J].地球物理学报, 2012, 55(3): 814-821 http://www.docin.com/p-859746434.html
|
[28] |
Velicogna I, Wahr J. Time-variable Gravity Observations of Ice Sheet Mass Balance: Precision and Limitations of the GRACE Satellite Data[J]. Geophys Res Lett, 2013, 40: 3 055-3 063 doi: 10.1002/grl.50527
|
[29] |
Ogawa R, Chao B F, Heki K, et al. Acceleration Signal in GRACE Time-variable Gravity in Relation to Interannual Hydrological Changes[J]. Geophys J Int, 2011, 184:673-679 doi: 10.1111/gji.2011.184.issue-2
|
[30] |
Syed T H, Famiglietti J S, Rodell M, et al. Analysis of Terrestrial Water Storage Changes from GRACE and GLDAS[J]. Water Resour Res, 2008, 44:W02433 http://cn.bing.com/academic/profile?id=2127393309&encoded=0&v=paper_preview&mkt=zh-cn
|
[1] | ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273 |
[2] | GENG Jianghui, YAN Zhe, WEN Qiang. Multi-GNSS Satellite Clock and Bias Product Combination: The Third IGS Reprocessing Campaign[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1070-1081. DOI: 10.13203/j.whugis20230071 |
[3] | LIU Mingliang, AN Jiachun, WANG Zemin, ZHANG Baojun, SONG Xiangyu. Performance Analysis of BDS-3 Multi-frequency Pseudorange Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 902-910. DOI: 10.13203/j.whugis20200714 |
[4] | YUAN Haijun, ZHANG Zhetao, HE Xiufeng, XU Tianyang, XU Xueyong. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. DOI: 10.13203/j.whugis20200517 |
[5] | ZHOU Ren-yu, HU Zhi-gang, CAI Hong-liang, ZHAO Zhen, RAO Yong-nan, CHEN Liang, ZHAO Qi-le. Analysis of Pseudorange and Carrier Ranging Deviation of BDS-3 Using Parabolic Directional Antenna[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1298-1308. DOI: 10.13203/j.whugis20200182 |
[6] | ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119 |
[7] | ZOU Xuan, LI Zongnan, CHEN Liang, LI Min, TANG Weiming, SHI Chuang. Modeling BeiDou IGSO and MEO Satellites Code Pseudorange Variations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1661-1666. DOI: 10.13203/j.whugis20160275 |
[8] | LI Xin, ZHANG Xiaohong, ZENG Qi, PAN Lin, ZHU Feng. The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062 |
[9] | LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107 |
[10] | FAN Lei, ZHONG Shiming, LI Zishen, OU Jikun. Effect of Tracking Stations Distribution on the Estimation of Differential Code Biases by GPS Satellites Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 316-321. DOI: 10.13203/j.whugis20140114 |