Du Daosheng, Shu Hong. A Temporal Geo-data Model with Timestamp on the Group of Synchronous Changing Data Items and the Segmented Topological Arc[J]. Geomatics and Information Science of Wuhan University, 1997, 22(2): 96-101.
Citation: Du Daosheng, Shu Hong. A Temporal Geo-data Model with Timestamp on the Group of Synchronous Changing Data Items and the Segmented Topological Arc[J]. Geomatics and Information Science of Wuhan University, 1997, 22(2): 96-101.

A Temporal Geo-data Model with Timestamp on the Group of Synchronous Changing Data Items and the Segmented Topological Arc

More Information
  • Received Date: November 17, 1996
  • Published Date: February 04, 1997
  • According to definition of geo-data model, it has been analyzed that time is a basic property of geographic entity and how to study geographic time in GIS. In the case of reality geographical environment changing fastly and application focusing on analysis of local change, current geo-data model have many flaws such as redundant storage of unchanged data、difficult extraction of temporal information、implicit representation of temporal property of geographic entity. Based on the law of existing many synchronous changing small units, a temporal geo-data model with timestamp on the group of synchronous changing data items and the segmented topological arc is presented, which reduces redundant storage and shows us apparent temporal property of geographic entity.
  • Related Articles

    [1]ZHANG Shaocheng, GUO Sheng, ZHENG Shenyu, WU Yunlong, YU Tao. Analysis of COSMIC-2 Radio Occultation Observations and Atmospheric Profiles[J]. Geomatics and Information Science of Wuhan University, 2025, 50(3): 497-506. DOI: 10.13203/j.whugis20220556
    [2]WANG Yanli, SUN Kexian, JIN Shuying, WANG Mi. Atmospheric Refraction Error Analysis for Visual and Infrared Multispectral Sensor in Multi-angle Imaging[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1176-1189. DOI: 10.13203/j.whugis20210080
    [3]ZHU Zhouzong, XU Xiaohua, LUO Jia. Inversion and Analysis of Atmospheric Boundary Layer Height Using FY-3C Radio Occultation Refractive Index Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3): 395-401. DOI: 10.13203/j.whugis20190271
    [4]XU Xiaohua, LIU Shulun, LUO Jia. Analysis on the Variation of Global ABL Top Structure Using COSMIC Radio Occultation Refractivity[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 94-100. DOI: 10.13203/j.whugis20160183
    [5]WANG Chun, TANG Guoan, DAI Shibao, JIANG Ling, WANG Jing. Quantitative Analysis of DEM Terrain Representation Error Field[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1074-1079. DOI: 10.13203/j.whugis20130008
    [6]SHI Chuang, ZOU Rong, YAO Yibin, LI Min. Systematic Error Analysis in Data Combination Baseed on SINEX Solution[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 608-611.
    [7]WU Yue, MENG Yang, WANG Zemin, XU Shaoquan. Triple-Frequency Methods for Correcting Higher-Order Ionospheric Refractive Error in GPS Modernization[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 601-603.
    [8]LI Zhenhong, LIU Jingnan, XU Caijun. Error Analysis in InSAR Data Processing[J]. Geomatics and Information Science of Wuhan University, 2004, 29(1): 72-76.
    [9]XU Xiaohua, LI Zhenghang, LUO Jia. Inversion of Earth's Neutral Atmospheric Parameters and Bending Angles with GPS Occultation Data[J]. Geomatics and Information Science of Wuhan University, 2003, 28(5): 589-592.
    [10]SHI Chuang, LIU Jingnan, YAO Yibin. The Systematical Error Analysis of High Precision GPS Network Adjustment[J]. Geomatics and Information Science of Wuhan University, 2002, 27(2): 148-152.

Catalog

    Article views (797) PDF downloads (210) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return