WANG Shuai, ZHANG Yongzhi, JIANG Yongtao, LIU Ning. Relationship Between Faults Three-Dimensional Rotation and Surface Deformation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 704-710. DOI: 10.13203/j.whugis20130837
Citation: WANG Shuai, ZHANG Yongzhi, JIANG Yongtao, LIU Ning. Relationship Between Faults Three-Dimensional Rotation and Surface Deformation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 704-710. DOI: 10.13203/j.whugis20130837

Relationship Between Faults Three-Dimensional Rotation and Surface Deformation

Funds: The National Natural Science Foundation of China, Nos. 41374028, 40674001; the Project of Country Resource Investigation, No.1212010914015; the Central University Basic Scientific Research Business Expenses Special Funds, No. CHD2012TD004.
More Information
  • Received Date: June 18, 2014
  • Published Date: May 04, 2016
  • The formulas to express surface deformation caused by three-dimensional fault rotation in a half space of an elastic homogeneous medium was derived based on the relationship between 1D rotation and surface deformation of a fault with a changed depth and dip. The varying surface displacement due to imparity rotation was analyzed and the horizontal displacement and vertical deformation calculated for a fault that rotates in several ways. The results show:1)Surface displacement diminishes with the increment of fault depth responding differently to the fault dip angle. The most significant fault surface deformation was when the rotation axes was the fault corner; 2)The model value is nearly equal in numerical when the fault rotates the same angle in different ways, the spatiak distribution of vertical deformation was closely related to the rotation ways;3)The surface deformation caused by 3D rotation has some distinctive numerical sliding characteristics but at the same magnitude. Regarding the spatial range, deformation due to fault sliding is more extensive than rotation. Finally, problems in disclination theory and crustal deformation research are discussed.
  • [1]
    Steketee J A. On Volterra's Dislocations in a Semi-infinite Elastic Medium[J]. Canadian Journal of Physics, 1958, 36(2):192-205
    [2]
    Steketee J A. Some Geophysical Applications of the Elasticity Theory of Dislocations[J]. Canadian Journal of Physics, 1958, 36(9):1168-1198
    [3]
    Okada Y. Surface Deformation due to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismological Society of America, 1985, 75(4):1135-1154
    [4]
    Okada Y. Internal Deformation Due to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismological Society of America, 1992, 82(2):1018-1040
    [5]
    Sun Wenke, Okubo S. Spherical Displacement Due to Point Dislocations in a Spherical Earth:I. Theory[J]. Chin J Geophys, 1994, 37(3):298-310(孙文科,大久保修平. 球体内点位错产生的球型位移场:I.理论[J]. 地球物理学报, 1994, 37(3):298-310)
    [6]
    Sun Wenke, Okubo S. Spherical Displacement Due to Point Dislocations in a Spherical Earth:Ⅱ. Dislocation Love Numbers[J]. Chin J Geophys, 1995, 38(1):71-82(孙文科. 球体内点位错产生的球型位移场:Ⅱ.位错Love数[J]. 地球物理学报, 1995, 38(1):71-82)
    [7]
    Sun Wenke, Okubo S. Surface Potential and Gravity Changes Due to Internal Dislocations in a Spherical Earth:I. Theory for a Point Dislocation[J].Geophysical Journal International,1993, 114(3):569-592
    [8]
    Sun Wenke, Okubo S, Fu Guangyu, et al. General Formulations of Global Co-seismic Deformations Caused by an Arbitrary Dislocation in a Spherically Symmetric Earth Model-Applicable to Deformed Earth Surface and Space-Fixed Point[J]. Geophysical Journal International, 2009, 177(3):817-833
    [9]
    Wang Rongjiang, Lorenzo-Martín F, Roth F. PSGRN/PSCMP:A New Code for Calculating Co-and Post-Seismic Deformation, Geoid and Gravity Changes based on the Viscoelastic Gravitational Dislocation Theory[J]. Computers & Geosciences, 2006, 32(4):527-541
    [10]
    Wang Wuxing, Sun Wenke, Jiang Zaisen. Comparison of Fault Models of the 2008 Wenchuan Earthquake(Ms 8.0) and Spatial Distributions of Co-seismic Deformations[J]. Tectonophysics, 2010, 491(1):85-95
    [11]
    Fu Guangyu. Deformations Caused by Wenchuan Earthquake in Three Gorges and Beijing Areas[J]. Journal of Geodesy and Geodynamics, 2008, 28(3):132-135(付广裕. 汶川地震对三峡坝区和北京地区形变场的影响[J]. 大地测量与地球动力学, 2008, 28(3):132-135)
    [12]
    Fu Guangyu, Sun Wenke. Effects of Spatial Distribution of Fault Slip on Calculating Co-seismic Displacement:Case Studies of the Chi-Chi Earthquake(Mw 7.6) and the Kunlun Earthquake(Mw 7.8)[J].Geophysical Research Letters,2004, 31(21):601-611
    [13]
    Xu Caijun, Wen Yangmao. Non-homogeneity of the Crust from Ms 7.9 Manyi (Tibet) Earthquake with InSAR Observation[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8):846-849(许才军, 温扬茂. 基于InSAR数据的西藏玛尼Ms 7.9级地震的地壳不均匀性研究[J]. 武汉大学学报·信息科学版, 2008, 33(8):846-849)
    [14]
    Ding Kaihua, Xu Caijun, Wen Yangmao. Postseismic Deformation Associated with the 2008 Wenchuan Earthquake by GPS Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2):131-135(丁开华, 许才军, 温扬茂. 汶川地震震后形变的GPS反演[J]. 武汉大学学报·信息科学版, 2013, 38(2):131-135)
    [15]
    Li Zhicai, Xu Caijun, Li Peng,et al. The Co-seismic Deformation Inversion Analysis Due to Different Seismic Fault Based on Crust Layering[J]. Geomatics and Information Science of Wuhan University, 2008,33(3):229-232(李志才, 许才军, 张鹏, 等. 基于地壳分层的地震断层同震变形反演分析[J]. 武汉大学学报·信息科学版, 2008, 33(3):229-232)
    [16]
    Chen Yuntai, Lin Banghui, Huang Linren, et al. A Dislocation Model of the Tangshan Earthquake of 1976 from the Inversion of Geodetic Data[J]. Chin J Geophys, 1979, 22(3):201-217(陈运泰, 林邦慧, 黄立人, 等. 用大地测量资料反演的1976年唐山地震的位错模式[J].地球物理学报,1979,22(3):201-217)
    [17]
    Wu Jicang, Xu Caijun. Negative Dislocation Model Parameters Inverted from GPS Data in North China[J]. Geomatics and Information Science of Wuhan University, 2002, 27(4):352-357(伍吉仓, 许才军. 利用GPS资料反演华北块体运动的负位错模型参数[J]. 武汉大学学报·信息科学版, 2002, 27(4):352-357)
    [18]
    Likhachev V A, Khairov R Y. Introduction to the Theory of Disclinations[M]. Leningrad:Leningrad State University Press, 1975
    [19]
    Yang Shunhua, Ding Dihua. Basic Theory of Crystal Dislocation[M]. Beijing:Science Press, 1998(杨顺华,丁棣华. 晶体位错理论基础[M]. 北京:科学出版社, 1998)
    [20]
    Zhang Yongzhi, Zhang Yong, Wu Yanjun, et al. Relationship Between Faults Rotation and Surface Deformation[J]. Journal of Geodesy and Geodynamics, 2013, 33(2):8-12(张永志, 张永, 武艳军, 等. 断层转动与地表变形关系研究[J]. 大地测量与地球动力学, 2013, 33(2):8-12)
  • Related Articles

    [1]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [2]GENG Jianghui, YAN Zhe, WEN Qiang. Multi-GNSS Satellite Clock and Bias Product Combination: The Third IGS Reprocessing Campaign[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1070-1081. DOI: 10.13203/j.whugis20230071
    [3]LIU Mingliang, AN Jiachun, WANG Zemin, ZHANG Baojun, SONG Xiangyu. Performance Analysis of BDS-3 Multi-frequency Pseudorange Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 902-910. DOI: 10.13203/j.whugis20200714
    [4]YUAN Haijun, ZHANG Zhetao, HE Xiufeng, XU Tianyang, XU Xueyong. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. DOI: 10.13203/j.whugis20200517
    [5]ZHOU Ren-yu, HU Zhi-gang, CAI Hong-liang, ZHAO Zhen, RAO Yong-nan, CHEN Liang, ZHAO Qi-le. Analysis of Pseudorange and Carrier Ranging Deviation of BDS-3 Using Parabolic Directional Antenna[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1298-1308. DOI: 10.13203/j.whugis20200182
    [6]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [7]ZOU Xuan, LI Zongnan, CHEN Liang, LI Min, TANG Weiming, SHI Chuang. Modeling BeiDou IGSO and MEO Satellites Code Pseudorange Variations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1661-1666. DOI: 10.13203/j.whugis20160275
    [8]LI Xin, ZHANG Xiaohong, ZENG Qi, PAN Lin, ZHU Feng. The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062
    [9]LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107
    [10]FAN Lei, ZHONG Shiming, LI Zishen, OU Jikun. Effect of Tracking Stations Distribution on the Estimation of Differential Code Biases by GPS Satellites Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 316-321. DOI: 10.13203/j.whugis20140114

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return