WANG Shuai, ZHANG Yongzhi, JIANG Yongtao, LIU Ning. Relationship Between Faults Three-Dimensional Rotation and Surface Deformation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 704-710. DOI: 10.13203/j.whugis20130837
Citation: WANG Shuai, ZHANG Yongzhi, JIANG Yongtao, LIU Ning. Relationship Between Faults Three-Dimensional Rotation and Surface Deformation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 704-710. DOI: 10.13203/j.whugis20130837

Relationship Between Faults Three-Dimensional Rotation and Surface Deformation

Funds: The National Natural Science Foundation of China, Nos. 41374028, 40674001; the Project of Country Resource Investigation, No.1212010914015; the Central University Basic Scientific Research Business Expenses Special Funds, No. CHD2012TD004.
More Information
  • Received Date: June 18, 2014
  • Published Date: May 04, 2016
  • The formulas to express surface deformation caused by three-dimensional fault rotation in a half space of an elastic homogeneous medium was derived based on the relationship between 1D rotation and surface deformation of a fault with a changed depth and dip. The varying surface displacement due to imparity rotation was analyzed and the horizontal displacement and vertical deformation calculated for a fault that rotates in several ways. The results show:1)Surface displacement diminishes with the increment of fault depth responding differently to the fault dip angle. The most significant fault surface deformation was when the rotation axes was the fault corner; 2)The model value is nearly equal in numerical when the fault rotates the same angle in different ways, the spatiak distribution of vertical deformation was closely related to the rotation ways;3)The surface deformation caused by 3D rotation has some distinctive numerical sliding characteristics but at the same magnitude. Regarding the spatial range, deformation due to fault sliding is more extensive than rotation. Finally, problems in disclination theory and crustal deformation research are discussed.
  • [1]
    Steketee J A. On Volterra's Dislocations in a Semi-infinite Elastic Medium[J]. Canadian Journal of Physics, 1958, 36(2):192-205
    [2]
    Steketee J A. Some Geophysical Applications of the Elasticity Theory of Dislocations[J]. Canadian Journal of Physics, 1958, 36(9):1168-1198
    [3]
    Okada Y. Surface Deformation due to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismological Society of America, 1985, 75(4):1135-1154
    [4]
    Okada Y. Internal Deformation Due to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismological Society of America, 1992, 82(2):1018-1040
    [5]
    Sun Wenke, Okubo S. Spherical Displacement Due to Point Dislocations in a Spherical Earth:I. Theory[J]. Chin J Geophys, 1994, 37(3):298-310(孙文科,大久保修平. 球体内点位错产生的球型位移场:I.理论[J]. 地球物理学报, 1994, 37(3):298-310)
    [6]
    Sun Wenke, Okubo S. Spherical Displacement Due to Point Dislocations in a Spherical Earth:Ⅱ. Dislocation Love Numbers[J]. Chin J Geophys, 1995, 38(1):71-82(孙文科. 球体内点位错产生的球型位移场:Ⅱ.位错Love数[J]. 地球物理学报, 1995, 38(1):71-82)
    [7]
    Sun Wenke, Okubo S. Surface Potential and Gravity Changes Due to Internal Dislocations in a Spherical Earth:I. Theory for a Point Dislocation[J].Geophysical Journal International,1993, 114(3):569-592
    [8]
    Sun Wenke, Okubo S, Fu Guangyu, et al. General Formulations of Global Co-seismic Deformations Caused by an Arbitrary Dislocation in a Spherically Symmetric Earth Model-Applicable to Deformed Earth Surface and Space-Fixed Point[J]. Geophysical Journal International, 2009, 177(3):817-833
    [9]
    Wang Rongjiang, Lorenzo-Martín F, Roth F. PSGRN/PSCMP:A New Code for Calculating Co-and Post-Seismic Deformation, Geoid and Gravity Changes based on the Viscoelastic Gravitational Dislocation Theory[J]. Computers & Geosciences, 2006, 32(4):527-541
    [10]
    Wang Wuxing, Sun Wenke, Jiang Zaisen. Comparison of Fault Models of the 2008 Wenchuan Earthquake(Ms 8.0) and Spatial Distributions of Co-seismic Deformations[J]. Tectonophysics, 2010, 491(1):85-95
    [11]
    Fu Guangyu. Deformations Caused by Wenchuan Earthquake in Three Gorges and Beijing Areas[J]. Journal of Geodesy and Geodynamics, 2008, 28(3):132-135(付广裕. 汶川地震对三峡坝区和北京地区形变场的影响[J]. 大地测量与地球动力学, 2008, 28(3):132-135)
    [12]
    Fu Guangyu, Sun Wenke. Effects of Spatial Distribution of Fault Slip on Calculating Co-seismic Displacement:Case Studies of the Chi-Chi Earthquake(Mw 7.6) and the Kunlun Earthquake(Mw 7.8)[J].Geophysical Research Letters,2004, 31(21):601-611
    [13]
    Xu Caijun, Wen Yangmao. Non-homogeneity of the Crust from Ms 7.9 Manyi (Tibet) Earthquake with InSAR Observation[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8):846-849(许才军, 温扬茂. 基于InSAR数据的西藏玛尼Ms 7.9级地震的地壳不均匀性研究[J]. 武汉大学学报·信息科学版, 2008, 33(8):846-849)
    [14]
    Ding Kaihua, Xu Caijun, Wen Yangmao. Postseismic Deformation Associated with the 2008 Wenchuan Earthquake by GPS Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2):131-135(丁开华, 许才军, 温扬茂. 汶川地震震后形变的GPS反演[J]. 武汉大学学报·信息科学版, 2013, 38(2):131-135)
    [15]
    Li Zhicai, Xu Caijun, Li Peng,et al. The Co-seismic Deformation Inversion Analysis Due to Different Seismic Fault Based on Crust Layering[J]. Geomatics and Information Science of Wuhan University, 2008,33(3):229-232(李志才, 许才军, 张鹏, 等. 基于地壳分层的地震断层同震变形反演分析[J]. 武汉大学学报·信息科学版, 2008, 33(3):229-232)
    [16]
    Chen Yuntai, Lin Banghui, Huang Linren, et al. A Dislocation Model of the Tangshan Earthquake of 1976 from the Inversion of Geodetic Data[J]. Chin J Geophys, 1979, 22(3):201-217(陈运泰, 林邦慧, 黄立人, 等. 用大地测量资料反演的1976年唐山地震的位错模式[J].地球物理学报,1979,22(3):201-217)
    [17]
    Wu Jicang, Xu Caijun. Negative Dislocation Model Parameters Inverted from GPS Data in North China[J]. Geomatics and Information Science of Wuhan University, 2002, 27(4):352-357(伍吉仓, 许才军. 利用GPS资料反演华北块体运动的负位错模型参数[J]. 武汉大学学报·信息科学版, 2002, 27(4):352-357)
    [18]
    Likhachev V A, Khairov R Y. Introduction to the Theory of Disclinations[M]. Leningrad:Leningrad State University Press, 1975
    [19]
    Yang Shunhua, Ding Dihua. Basic Theory of Crystal Dislocation[M]. Beijing:Science Press, 1998(杨顺华,丁棣华. 晶体位错理论基础[M]. 北京:科学出版社, 1998)
    [20]
    Zhang Yongzhi, Zhang Yong, Wu Yanjun, et al. Relationship Between Faults Rotation and Surface Deformation[J]. Journal of Geodesy and Geodynamics, 2013, 33(2):8-12(张永志, 张永, 武艳军, 等. 断层转动与地表变形关系研究[J]. 大地测量与地球动力学, 2013, 33(2):8-12)
  • Related Articles

    [1]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [2]GENG Jianghui, YAN Zhe, WEN Qiang. Multi-GNSS Satellite Clock and Bias Product Combination: The Third IGS Reprocessing Campaign[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1070-1081. DOI: 10.13203/j.whugis20230071
    [3]LIU Mingliang, AN Jiachun, WANG Zemin, ZHANG Baojun, SONG Xiangyu. Performance Analysis of BDS-3 Multi-frequency Pseudorange Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 902-910. DOI: 10.13203/j.whugis20200714
    [4]YUAN Haijun, ZHANG Zhetao, HE Xiufeng, XU Tianyang, XU Xueyong. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. DOI: 10.13203/j.whugis20200517
    [5]ZHOU Ren-yu, HU Zhi-gang, CAI Hong-liang, ZHAO Zhen, RAO Yong-nan, CHEN Liang, ZHAO Qi-le. Analysis of Pseudorange and Carrier Ranging Deviation of BDS-3 Using Parabolic Directional Antenna[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1298-1308. DOI: 10.13203/j.whugis20200182
    [6]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [7]ZOU Xuan, LI Zongnan, CHEN Liang, LI Min, TANG Weiming, SHI Chuang. Modeling BeiDou IGSO and MEO Satellites Code Pseudorange Variations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1661-1666. DOI: 10.13203/j.whugis20160275
    [8]LI Xin, ZHANG Xiaohong, ZENG Qi, PAN Lin, ZHU Feng. The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062
    [9]LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107
    [10]FAN Lei, ZHONG Shiming, LI Zishen, OU Jikun. Effect of Tracking Stations Distribution on the Estimation of Differential Code Biases by GPS Satellites Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 316-321. DOI: 10.13203/j.whugis20140114
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(30)

Catalog

    Article views (1363) PDF downloads (379) Cited by(58)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return