DUAN Miaomiao, MA Yingying, GONG Wei, WANG Lunche. A Method of Radiometric Measurements of Cloud Attenuation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1606-1612. DOI: 10.13203/j.whugis20130820
Citation: DUAN Miaomiao, MA Yingying, GONG Wei, WANG Lunche. A Method of Radiometric Measurements of Cloud Attenuation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1606-1612. DOI: 10.13203/j.whugis20130820

A Method of Radiometric Measurements of Cloud Attenuation

Funds: The National Natural Science Foundation of China,Nos. 41401498,41127901;Program for Innovative Research Team in University of Ministry of Education of China, No.IRT1278;Specialized Research Fund for the Doctoral Program of Higher Education of China, No.20120141120040; Cheng Guang Project of Wuhan, No. 2014070404010198.
More Information
  • Received Date: June 30, 2015
  • Published Date: December 04, 2015
  • Cloud attenuation has a non-negligible impact on radio waves propagating over an earth-space path, especially in high frequency signals of the satellite communication system. A precise cloud attenuation method that has mid-latitude regions applicability is presented in this paper, using the HATPRO microwave radiometer's data particularly cloud liquid water density profiles. The result indicates that the effect of cloud attenuation enlarges rapidly as the frequency increases. More than 10 dB is caused due to cloud for 99.99% link availability at high bands. It is useful to relate the calculated cloud attenuation to integrated liquid water content,and the relationship is modeled by solid line. Predictions made with the method are compared with cloud attenuation data calculated by ITU-R (The ITU Radio communication sector) model, suggesting that the ITU-R model underestimates the effect of cloud attenuation in Wuhan area, resulting from the model's underestimation of integrated liquid water content.
  • [1]
    Rytír M. Radiowave Propagation at Ka-band (20/30 GHz) for Satellite Communication in High-Latitude Regions[D]. Norway:Norwegian University of Science and Technology, 2009
    [2]
    Su Zhenling.Research on Atmospheric Combined Attention Effect on Millimeter Wave System[D]. Xi'an:Xidian University, 2008(苏振玲. 大气复合衰减对毫米波系统的影响研究[D]. 西安电子科技大学, 2008)
    [3]
    Yang Ruike. Research on Several Electromagnetic(Optical)Wave Propagation Problems on Earth-space Paths in Troposphere Atmosphere[D]. Xi'an:Xidian University, 2003(杨瑞科. 对流层地—空路径电磁(光)波传播的若干问题研究[D]. 西安电子科技大学, 2003)
    [4]
    Wang L, Gong W, Ma Y, et al. Analysis of Ultraviolet Radiation in Central China from Observation and Estimation[J]. Energy,2013, 59: 764-774
    [5]
    Altshuler E E, Marr R A. Cloud Attenuation at Millimeter Wavelengths[J]. Antennas and Propagation, IEEE Transactions on,1989, 37(11): 1 473-1 479
    [6]
    Dintelmann F, Ortgies G. Semiempirical Model for Cloud Attenuation Prediction[J]. Electronics Letters,1989, 25(22): 1 487-1 488
    [7]
    Salonen E, Uppala S. New Prediction Method of Cloud Attenuation[J]. Electronics Letters,1991, 27(12): 1 106-1 108
    [8]
    Omotosho T V, Mandeep J S, Abdullah M. Cloud Cover, Cloud Liquid Water and Cloud Attenuation at Ka and V bands over Equatorial Climate[J]. Meteorological Applications,2014,21(3):777-785
    [9]
    Das S, Chakraborty S, Maitra A. Radiometric Measurements of Cloud Attenuation at a Tropical Location in India[J].Journal of Atmospheric and Solar-Terrestrial Physics,2013, 105: 97-100
    [10]
    Maitra A, Chakraborty S. Cloud Liquid Water Content and Cloud Attenuation Studies with Radiosonde Data at a Tropical Location[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30(4): 367-373
    [11]
    Recommendation ITU-R. Attenuation due to Cloud and Fog[J]. ITU-R P, 2009,4:840
    [12]
    Mao Tianpeng, Zhou Dongfang, NiuZhongxia, et al.The Calculation Model of the Attention Due to Clouds or Fog and the Analysis of Its Characteristic[J]. Wireless Communication Technology, 2004,3: 51-54(毛天鹏,周东方,牛忠霞,等. 毫米波云雾衰减计算模型及特性分析[J]. 无线通信技术, 2004, 3: 51-54)
    [13]
    Lian Yi, Chen Shengbo, Meng Zhiguo, et al. Distribution of Microwave Radiation Brightness Temperature on the Lunar Surface Based on Chang'E-2 MRM Data [J]. Geomatics and Information Science of Wuhan University, 2015, 40(6):732-737 (连懿, 陈圣波, 孟治国,等. 利用嫦娥二号微波辐射计数据的全月亮温制图[J]. 武汉大学学报·5信息科学版, 2015, 40(6):732-737)
    [14]
    Wang Yongqian, Shi Jiancheng, Liu Zhihong, et al. Passive Microwave Remote Sensing of Precipitable Water Vapor over Beijing-Tianjin-Hebei Region Based on AMSR-E[J]. Geomatics and Information Science of Wuhan University, 2015, 40(4):479-486 (王永前, 施建成, 刘志红,等. 利用微波辐射计AMSR-E的京津冀地区大气水汽反演[J]. 武汉大学学报·5信息科学版, 2015, 40(4):479-486)
    [15]
    Macke A, Kalisch J, Zoll Y, et al. Radiative Effects of the Cloudy Atmosphere from Ground and Satellite Based Observations[C]. EPJ Web of Conference,EDP Sciences, France, 2010
    [16]
    Rose T, Crewell S, Löhnert U, et al. A Network Suitable Microwave Radiometer for Operational Monitoring of the Cloudy Atmosphere[J]. Atmospheric Research, 2005, 75(3): 183-200
    [17]
    Löhnert U, Maier O. Operational Profiling of Temperature Using Ground-based Microwave Radiometry at Payerne: Prospects and Challenges[J]. Atmospheric Measurement Techniques, 2012, 5(5): 1 121-1 134
    [18]
    Löhnert U, Turner D D, Crewell S. Ground-based Temperature and Humidity Profiling Using Spectral Infrared and Microwave Observations. Part I: Simulated Retrieval Performance in Clear-sky Conditions[J]. Journal of Applied Meteorology and Climatology, 2009, 48(5): 1 017-1 032
    [19]
    Zhou Xiuji. Atmospheric Microwave Radiation and Principles of Remote Sensing[M]. Beijing:Science Press,1982(周秀骥. 大气微波辐射及遥感原理[M]. 北京:科学出版社, 1982)
    [20]
    Liebe H J, Hufford G A, Manabe T. A Model for the Complex Permittivity of Water at Frequencies Below 1 THz[J]. International Journal of Infrared and Millimeter Waves,1991, 12(7): 659-675
  • Related Articles

    [1]JI Kunpu, SHEN Yunzhong, CHEN Qiujie. An Adaptive Regularized Filtering Approach for Processing GRACE Time-Variable Gravity Field Models[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2101-2112. DOI: 10.13203/j.whugis20240316
    [2]LIU Meng, WANG Zheng-tao. Downward Continuation Iterative Regularization Solution Based on Quasi Optimal Regularization Factor Set[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230127
    [3]WU Fengfeng, HUANG Haijun, REN Qingyang, FAN Wenyou, CHEN Jie, PAN Xiong. Analysis of Downward Continuation Model of Airborne Gravity Based on Comprehensive Semi-parametric Kernel Estimation and Regularization Method[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1563-1569. DOI: 10.13203/j.whugis20180491
    [4]XU Xinqiang, ZHAO Jun. A Multi-Parameter Regularization Method in Downward Continuation for Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 956-963, 973. DOI: 10.13203/j.whugis20180335
    [5]JI Kunpu, SHEN Yunzhong. Unbiased Estimation of Unit Weight Variance by TSVD Regularization[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 626-632. DOI: 10.13203/j.whugis20180270
    [6]SUN Wen, WU Xiaoping, WANG Qingbin, LIU Xiaogang, ZHU Zhida. Normalized Collocation Based on Variance Component Estimate and Its Application in Multi-source Gravity Data Fusion[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1087-1092. DOI: 10.13203/j.whugis20140159
    [7]ZENG Xiaoniu, LI Xihai, LIU Zhigang, YANG Xiaojun, LIU Daizhi. Regularization Method for Reduction to the Pole and Components Transformation of Magnetic Anomaly at Low Latitudes[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 388-394. DOI: 10.13203/j.whugis20140342
    [8]GU Yongwei, GUI Qingming, HAN Songhui, WANG Jinhui. Regularization by Grouping Correction in Downward Continuation of Airborne Gravity[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 720-724.
    [9]GU Yongwei, GUI Qingming, BIAN Shaofeng, GUO Jianfeng. Comparison Between Tikhonov Regularization and Truncated SVD in Geophysics[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 238-241.
    [10]XU Tianhe, YANG Yuanxi. Robust Tikhonov Regularization Method and Its Applications[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 719-722.
  • Cited by

    Periodical cited type(5)

    1. 穆庆禄,王长青,闫易浩,钟敏,冯伟,梁磊,朱紫彤. 不同指向模式下星载冷原子梯度仪对重力场解算精度的影响. 地球物理学报. 2024(07): 2528-2545 .
    2. 刘滔,钟波,李贤炮,谭江涛. GOCE卫星重力梯度数据反演重力场的滤波器设计与比较分析. 武汉大学学报(信息科学版). 2023(05): 694-701 .
    3. 朱广彬,常晓涛,瞿庆亮,周苗. 利用卫星引力梯度确定地球重力场的张量不变方法研究. 武汉大学学报(信息科学版). 2022(03): 334-340 .
    4. 罗志才,钟波,周浩,吴云龙. 利用卫星重力测量确定地球重力场模型的进展. 武汉大学学报(信息科学版). 2022(10): 1713-1727 .
    5. 陈鑑华,张兴福,陈秋杰,梁建青,沈云中. 融合GOCE和GRACE卫星数据的无约束重力场模型Tongji-GOGR2019S. 地球物理学报. 2020(09): 3251-3262 .

    Other cited types(1)

Catalog

    Article views (1394) PDF downloads (443) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return