DUAN Miaomiao, MA Yingying, GONG Wei, WANG Lunche. A Method of Radiometric Measurements of Cloud Attenuation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1606-1612. DOI: 10.13203/j.whugis20130820
Citation: DUAN Miaomiao, MA Yingying, GONG Wei, WANG Lunche. A Method of Radiometric Measurements of Cloud Attenuation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1606-1612. DOI: 10.13203/j.whugis20130820

A Method of Radiometric Measurements of Cloud Attenuation

Funds: The National Natural Science Foundation of China,Nos. 41401498,41127901;Program for Innovative Research Team in University of Ministry of Education of China, No.IRT1278;Specialized Research Fund for the Doctoral Program of Higher Education of China, No.20120141120040; Cheng Guang Project of Wuhan, No. 2014070404010198.
More Information
  • Received Date: June 30, 2015
  • Published Date: December 04, 2015
  • Cloud attenuation has a non-negligible impact on radio waves propagating over an earth-space path, especially in high frequency signals of the satellite communication system. A precise cloud attenuation method that has mid-latitude regions applicability is presented in this paper, using the HATPRO microwave radiometer's data particularly cloud liquid water density profiles. The result indicates that the effect of cloud attenuation enlarges rapidly as the frequency increases. More than 10 dB is caused due to cloud for 99.99% link availability at high bands. It is useful to relate the calculated cloud attenuation to integrated liquid water content,and the relationship is modeled by solid line. Predictions made with the method are compared with cloud attenuation data calculated by ITU-R (The ITU Radio communication sector) model, suggesting that the ITU-R model underestimates the effect of cloud attenuation in Wuhan area, resulting from the model's underestimation of integrated liquid water content.
  • [1]
    Rytír M. Radiowave Propagation at Ka-band (20/30 GHz) for Satellite Communication in High-Latitude Regions[D]. Norway:Norwegian University of Science and Technology, 2009
    [2]
    Su Zhenling.Research on Atmospheric Combined Attention Effect on Millimeter Wave System[D]. Xi'an:Xidian University, 2008(苏振玲. 大气复合衰减对毫米波系统的影响研究[D]. 西安电子科技大学, 2008)
    [3]
    Yang Ruike. Research on Several Electromagnetic(Optical)Wave Propagation Problems on Earth-space Paths in Troposphere Atmosphere[D]. Xi'an:Xidian University, 2003(杨瑞科. 对流层地—空路径电磁(光)波传播的若干问题研究[D]. 西安电子科技大学, 2003)
    [4]
    Wang L, Gong W, Ma Y, et al. Analysis of Ultraviolet Radiation in Central China from Observation and Estimation[J]. Energy,2013, 59: 764-774
    [5]
    Altshuler E E, Marr R A. Cloud Attenuation at Millimeter Wavelengths[J]. Antennas and Propagation, IEEE Transactions on,1989, 37(11): 1 473-1 479
    [6]
    Dintelmann F, Ortgies G. Semiempirical Model for Cloud Attenuation Prediction[J]. Electronics Letters,1989, 25(22): 1 487-1 488
    [7]
    Salonen E, Uppala S. New Prediction Method of Cloud Attenuation[J]. Electronics Letters,1991, 27(12): 1 106-1 108
    [8]
    Omotosho T V, Mandeep J S, Abdullah M. Cloud Cover, Cloud Liquid Water and Cloud Attenuation at Ka and V bands over Equatorial Climate[J]. Meteorological Applications,2014,21(3):777-785
    [9]
    Das S, Chakraborty S, Maitra A. Radiometric Measurements of Cloud Attenuation at a Tropical Location in India[J].Journal of Atmospheric and Solar-Terrestrial Physics,2013, 105: 97-100
    [10]
    Maitra A, Chakraborty S. Cloud Liquid Water Content and Cloud Attenuation Studies with Radiosonde Data at a Tropical Location[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30(4): 367-373
    [11]
    Recommendation ITU-R. Attenuation due to Cloud and Fog[J]. ITU-R P, 2009,4:840
    [12]
    Mao Tianpeng, Zhou Dongfang, NiuZhongxia, et al.The Calculation Model of the Attention Due to Clouds or Fog and the Analysis of Its Characteristic[J]. Wireless Communication Technology, 2004,3: 51-54(毛天鹏,周东方,牛忠霞,等. 毫米波云雾衰减计算模型及特性分析[J]. 无线通信技术, 2004, 3: 51-54)
    [13]
    Lian Yi, Chen Shengbo, Meng Zhiguo, et al. Distribution of Microwave Radiation Brightness Temperature on the Lunar Surface Based on Chang'E-2 MRM Data [J]. Geomatics and Information Science of Wuhan University, 2015, 40(6):732-737 (连懿, 陈圣波, 孟治国,等. 利用嫦娥二号微波辐射计数据的全月亮温制图[J]. 武汉大学学报·5信息科学版, 2015, 40(6):732-737)
    [14]
    Wang Yongqian, Shi Jiancheng, Liu Zhihong, et al. Passive Microwave Remote Sensing of Precipitable Water Vapor over Beijing-Tianjin-Hebei Region Based on AMSR-E[J]. Geomatics and Information Science of Wuhan University, 2015, 40(4):479-486 (王永前, 施建成, 刘志红,等. 利用微波辐射计AMSR-E的京津冀地区大气水汽反演[J]. 武汉大学学报·5信息科学版, 2015, 40(4):479-486)
    [15]
    Macke A, Kalisch J, Zoll Y, et al. Radiative Effects of the Cloudy Atmosphere from Ground and Satellite Based Observations[C]. EPJ Web of Conference,EDP Sciences, France, 2010
    [16]
    Rose T, Crewell S, Löhnert U, et al. A Network Suitable Microwave Radiometer for Operational Monitoring of the Cloudy Atmosphere[J]. Atmospheric Research, 2005, 75(3): 183-200
    [17]
    Löhnert U, Maier O. Operational Profiling of Temperature Using Ground-based Microwave Radiometry at Payerne: Prospects and Challenges[J]. Atmospheric Measurement Techniques, 2012, 5(5): 1 121-1 134
    [18]
    Löhnert U, Turner D D, Crewell S. Ground-based Temperature and Humidity Profiling Using Spectral Infrared and Microwave Observations. Part I: Simulated Retrieval Performance in Clear-sky Conditions[J]. Journal of Applied Meteorology and Climatology, 2009, 48(5): 1 017-1 032
    [19]
    Zhou Xiuji. Atmospheric Microwave Radiation and Principles of Remote Sensing[M]. Beijing:Science Press,1982(周秀骥. 大气微波辐射及遥感原理[M]. 北京:科学出版社, 1982)
    [20]
    Liebe H J, Hufford G A, Manabe T. A Model for the Complex Permittivity of Water at Frequencies Below 1 THz[J]. International Journal of Infrared and Millimeter Waves,1991, 12(7): 659-675
  • Related Articles

    [1]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [2]GENG Jianghui, YAN Zhe, WEN Qiang. Multi-GNSS Satellite Clock and Bias Product Combination: The Third IGS Reprocessing Campaign[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1070-1081. DOI: 10.13203/j.whugis20230071
    [3]LIU Mingliang, AN Jiachun, WANG Zemin, ZHANG Baojun, SONG Xiangyu. Performance Analysis of BDS-3 Multi-frequency Pseudorange Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 902-910. DOI: 10.13203/j.whugis20200714
    [4]YUAN Haijun, ZHANG Zhetao, HE Xiufeng, XU Tianyang, XU Xueyong. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. DOI: 10.13203/j.whugis20200517
    [5]ZHOU Ren-yu, HU Zhi-gang, CAI Hong-liang, ZHAO Zhen, RAO Yong-nan, CHEN Liang, ZHAO Qi-le. Analysis of Pseudorange and Carrier Ranging Deviation of BDS-3 Using Parabolic Directional Antenna[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1298-1308. DOI: 10.13203/j.whugis20200182
    [6]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [7]ZOU Xuan, LI Zongnan, CHEN Liang, LI Min, TANG Weiming, SHI Chuang. Modeling BeiDou IGSO and MEO Satellites Code Pseudorange Variations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1661-1666. DOI: 10.13203/j.whugis20160275
    [8]LI Xin, ZHANG Xiaohong, ZENG Qi, PAN Lin, ZHU Feng. The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062
    [9]LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107
    [10]FAN Lei, ZHONG Shiming, LI Zishen, OU Jikun. Effect of Tracking Stations Distribution on the Estimation of Differential Code Biases by GPS Satellites Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 316-321. DOI: 10.13203/j.whugis20140114
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(30)

Catalog

    Article views PDF downloads Cited by(58)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return