SHAO Qihong, WAN Xianrong, YOU Jun, CHENG Feng, KE Hengyu. Receiving Array Calibration Using DRM Frequency Reference Signal of Direct Wave for HF Passive Bistatic Radar[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1069-1074. DOI: 10.13203/j.whugis20130719
Citation: SHAO Qihong, WAN Xianrong, YOU Jun, CHENG Feng, KE Hengyu. Receiving Array Calibration Using DRM Frequency Reference Signal of Direct Wave for HF Passive Bistatic Radar[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1069-1074. DOI: 10.13203/j.whugis20130719

Receiving Array Calibration Using DRM Frequency Reference Signal of Direct Wave for HF Passive Bistatic Radar

Funds: The National Natural Science Foundation of China,Nos.61331012,U1333106,41106156,41074116;the Fundamen-tal Research Funds for the Central Universities,No.2012212020214.
More Information
  • Author Bio:

    SHAO Qihong,PhD candidate,specializes in signal processing of wireless communication and passive radar.

  • Corresponding author:

    WAN Xianrong,PhD,professor.

  • Received Date: November 28, 2013
  • Revised Date: August 04, 2015
  • Published Date: August 04, 2015
  • Based on the characteristics of the digital radio mondiale(DRM),a new method of arraycalibration for high-frequency passive radar(HFPBR)by using frequency reference signal of directwave is proposed.Firstly the signal structure of DRM is introduced,while the feasibility of take fre-quency reference signal as the calibration source is demonstrated.Secondly,taking into account the e-lectromagnetic environment and time-varying non-stationary propagation characteristics,a method ofchoosing high quality direct wave period by the shift-invariant antenna pairs is proposed.Finally,as-sist by the known DRM transmitter position,we utilized this method deal with measured direct wavedata which propagate in surface wave mode and sky wave mode,compared the result of array calibra-tion value with known single frequency signal source.The results showed that the amplitude andphase compensation method in DRM-based HFPBR is effective.
  • [1]
    Thomas J M,Griffiths H D,Baker C J.AmbiguityFunction Analysis of Digital Radio Mondiale Signalsfor HF Passive Bistatic Radar[J].Electronics Let-ters,2006,42(25):1 482-1 483[2] Wan Xianrong,Zhao Zhixin,Zhang Delei,et al. HF Passive Bistatic Radar Based on DRM Illumina-tors[C].RADAR 2011,Chengdu,2011[3] Maliet P,Sizun H.Use of a DRM Modulation toStudy the Ionosphere[C].General Assembly andScientific Symposium,Istanbul,Turkey,2011[4] Wan Xianrong,Zhao Zhixin,Ke Hengyu,et al.Experi-mental Research of HF Passive Radar Based on DRMDigital AM Broadcasting[J].Journal of Radars,2012,1(1):11-18(万显荣,赵志欣,柯亨玉,等.基于DRM数字调幅广播的高频外辐射源雷达实验研究[J].雷达学报,2012,1(1):11-18)[5] Wan Xianrong.An Overview on Development ofPassive Radar Based on the Low Frequency BandDigital Broadcasting and TV Signals[J].Journalo fRadars,2012,01(02):109-123(万显荣.基于低频段数字广播电视信号的外辐射源雷达发展现状与趋势[J].雷达学报,2012,01(02):109-123)[6] Underhill M J.Estimation of Ionospheric LayerHeights and Velocities Using Available DRM Sig-nals[C].IRST 2012,New York,2012[7] Zhao Zhixin,Wan Xianrong,Zhang Delei,et al. An Experimental Study of HF Passive Bistatic Ra-dar Via Hybrid Sky-surface Wave Mode[J].Anten-nas and Propagation,IEEE Transactions on,2013,61(1):415-424[8] Fabrizio G A ,Gray D A ,Turley M D.UsingSources of Opportunity to Estimate Digital Compen-sation for Receiver Mismatch in HF Arrays[C].ISSPA’99,Brisbane Qld,1999[9] Paulraj A,Kailath T.Direction of Arrival Estima-tion by Eigenstructure Methods with Unknown Sen-sor Gain and Phase[C].Acoustics,Speech,andSignal Processing,IEEE International Conferenceon ICASSP’85,Tampa,11985[10] Song Xiaoguo,Wei Yinsheng,Cui Yan,et al.ANovel Array Calibration Method Based on SpatialCorrelation Matrix for HFSWR[C].Signal Pro-cessing(ICSP),2010IEEE 10th International Con-ference on,Beijing,2010[11] Zhang J,Wu W ,Fang D G.Comparison of Cor-rection Techniques and Analysis of Errors for Digit-al Beamforming Antenna Array With Single RF Re-ceiver[J].Antennas and Propagation,IEEETransactions on,2012,60(11):5 157-5 163[12] Oger M ,Marie F,Lemur D,et al.A Method toCalibrate HF Receiving Antenna Arrays[C].Iono-spheric Radio Systems and Techniques(IRST 2006),10th IET International Conference on,Beijing,2006[13] Fernandez D M,Vesecky J,Teague C.Calibrationof HF Radar Systems with Ships of Opportunity[C].IGARSS’03,Toulouse,France,2003.[14] Tian Wenlong,Li Gaopeng,Xu Rongqing.High Fre-quency Surface Wave Radar Antenna Array CalibrationUsing Automatic Identification System Data[J].Jour-nal of Electronic &Information Technology,2012,34(5):1 065-1 069(田文龙,李高鹏,许荣庆.利用自动识别系统信息进行高频地波雷达天线阵校正[J].电子与信息学报,2012,34(5):1 065-1 069)[15] Bourdillon A ,Delloue J.Phase Correction of anHF Multireceiver Antenna Array Using a RadarTransponder[C].IEEE International Conference,Adelaide,SA,1994[16] Wu Xiongbin,Cheng Feng,Yang Zijie,et al.Broad Beam HFSWR Array Calibration Using SeaEchoes[C].CIE’06International Conference,Shanghai,2006[17] Digital Radio Mondiale(DRM);System Specifica-tion[OL].http://www.drm.org/wp-content/up-loads/2014/01/DRM-System-Specification-ETSI-ES-201-980-V4.1.1-2014-01.pdf,2014[18]Cheng Feng,Wu Xiongbi.A Passive Channel Ad-justmet Method Based on a Non-linear Antenna Ar-ray[OL].http://www.freepatentsonline.com/EP1879043.html,2008
  • Related Articles

    [1]MENG Yiyue, GUO Chi, LIU Jingnan. Deep Reinforcement Learning Visual Target Navigation Method Based on Attention Mechanism and Reward Shaping[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1100-1108. DOI: 10.13203/j.whugis20230193
    [2]GAO Kuiliang, LIU Bing, YU Xuchu, YU Anzhu, SUN Yifan. Automatic Network Structure Search Method for Hyperspectral Image Classification[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 225-235. DOI: 10.13203/j.whugis20210380
    [3]WANG Jie, LIU Jiahang, LING Xinpeng, DUAN Zexian. Deep Learning-Based Joint Local and Non-local InSAR Image Phase Filtering Method[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240052
    [4]GUO Congzhou, LI Ke, LI He, TONG Xiaochong, WANG Xiwen. Deep Convolution Neural Network Method for Remote Sensing Image Quality Level Classification[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1279-1286. DOI: 10.13203/j.whugis20200292
    [5]LI Yansheng, ZHANG Yongjun. A New Paradigm of Remote Sensing Image Interpretation by Coupling Knowledge Graph and Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1176-1190. DOI: 10.13203/j.whugis20210652
    [6]JI Shunping, LUO Chong, LIU Jin. A Review of Dense Stereo Image Matching Methods Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 193-202. DOI: 10.13203/j.whugis20200620
    [7]ZHANG Liqiang, LI Yang, HOU Zhengyang, LI Xingang, GENG Hao, WANG Yuebin, LI Jingwen, ZHU Panpan, MEI Jie, JIANG Yanxiao, LI Shuaipeng, XIN Qi, CUI Ying, LIU Suhong. Deep Learning and Remote Sensing Data Analysis[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1857-1864. DOI: 10.13203/j.whugis20200650
    [8]JU Yuanzhen, XU Qiang, JIN Shichao, LI Weile, DONG Xiujun, GUO Qinghua. Automatic Object Detection of Loess Landslide Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1747-1755. DOI: 10.13203/j.whugis20200132
    [9]PAN Yin, SHAO Zhenfeng, CHENG Tao, HE Wei. Analysis of Urban Waterlogging Influence Based on Deep Learning Model[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 132-138. DOI: 10.13203/j.whugis20170217
    [10]FAN Heng, XU Jun, DENG Yong, XIANG Jinhai. Behavior Recognition of Human Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 492-497. DOI: 10.13203/j.whugis20140110
  • Cited by

    Periodical cited type(5)

    1. 张爱竹,李忍忍,梁树能,孙根云,付航. 联合样本扩充和谱空迭代的高光谱影像分类. 武汉大学学报(信息科学版). 2025(01): 97-109 .
    2. 杜培军,张伟,张鹏,林聪,郭山川,胡泽周. 一种联合空谱特征的高光谱影像分类胶囊网络. 测绘学报. 2023(07): 1090-1104 .
    3. 高奎亮,刘冰,余岸竹,徐佰祺,胡伟,胡家玮. 高光谱影像少样例分类的无监督元学习方法. 测绘学报. 2023(11): 1941-1952 .
    4. 张彬,刘亮,李晓杰,周伟. 基于深度学习的高光谱影像分类方法研究. 红外与毫米波学报. 2023(06): 825-833 .
    5. 孙一帆,余旭初,谭熊,刘冰,高奎亮. 面向小样本高光谱影像分类的轻量化关系网络. 武汉大学学报(信息科学版). 2022(08): 1336-1348 .

    Other cited types(1)

Catalog

    Article views (1239) PDF downloads (303) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return