CHEN Liqiong, TIAN Liqiao, QIU Feng, CHEN Xiaoling. Water Color Constituents Remote Sensing in Wuhan Donghu Lake Using HJ-1A/B CCD Imagery[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1280-1283.
Citation: CHEN Liqiong, TIAN Liqiao, QIU Feng, CHEN Xiaoling. Water Color Constituents Remote Sensing in Wuhan Donghu Lake Using HJ-1A/B CCD Imagery[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1280-1283.

Water Color Constituents Remote Sensing in Wuhan Donghu Lake Using HJ-1A/B CCD Imagery

Funds: 国家973计划资助项目(2011CB707106);国家自然科学基金资助项目(40906092,41071261,40676094);国家自然基金委创新研究群体科学基金资助项目(41021061);湖北省自然科学基金资助项目(2009CDB107);武汉大学测绘遥感信息工程国家重点实验室专项科研经费资助项目;武汉大学博士生自主科研课题资助项目;南昌大学“鄱阳湖环境与资源利用教育部重点实验室”开放课题资助项目(Z03975);985国家重点实验室仪器设备专项经费资助项目
More Information
  • Received Date: September 14, 2011
  • Published Date: November 04, 2011
  • The CCD sensors onboard HJ-1A/B satellite,launched on Sep.6,2008,have the superiorities of high spatial and temporal resolution in water environment monitoring for small lakes.Taking Donghu in Wuhan as an example,atmospheric correction of HJ-1A/B CCD imagery was carried out using fast line-of-sight atmospheric analysis of spectral hypercubes(FLAASH) model,in which aerosol optical depth was retrieved from synchronous MODIS-Terra data.Then an artificial neural network(ANN) algorithm for the retrieval of chlorophyll-a,suspended sediments and absorption coefficient of colored dissolved organic matter(CDOM) was established with in-situ data obtained in three consecutive years.The results show that,compared with the in-situ data,the mean relative errors of the retrieved suspended sediments,absorption coefficient of CDOM and chlorophyll-a are 28.052%,17.628% and 35.621% respectively,which can meet the requirement of monitoring water color elements in inland waters.
  • Related Articles

    [1]LIN Dongfang, ZHU Jianjun. Improved Ridge Estimation with Singular Value Correction Constraints[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1834-1839. DOI: 10.13203/j.whugis20150581
    [2]XU Jian, CHANG Zhiguo, ZHANG Xiaodan. Image Super-resolution Based on Alternate K-Singular Value Decomposition[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1137-1143. DOI: 10.13203/j.whugis20150095
    [3]ZENG Xiaoniu, LIU Daizhi, LI Xihai, SU Juan, CHEN Dingxin, QI Wei. An Improved Singular Value Modification Method for Ill-posed Problems[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1349-1353. DOI: 10.13203/j.whugis20130709
    [4]YAO Yibin, KONG Jian. A New Combined LS Method Considering Random Errors of Design Matrix[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1028-1032. DOI: 10.13203/j.whugis20130030
    [5]TAO Xiaojing, ZHU Jianjun, TIAN Yumiao. Analysis of Factors Influencing Smoothing Parameter in Semiparametric Model[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 298-301.
    [6]WANG Leyang, XU Caijun. Ridge Estimation Method in Inversion Problem with Ill-posed Constraint[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 612-616.
    [7]LIAO Haibin, CHEN Qinghu, YAN Yuchen. 3D Face Reconstruction of Morphable Model and Its Improvement[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 176-180.
    [8]WANG Leyang, XU Caijun, LU Tieding. Ridge Estimation Method in Ill-posed Weighted Total Least Squares Adjustment[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1346-1350.
    [9]ZHANG Yongjun, HU Binghua, ZHANG Jianqing. Absolute Orientation of Large Rotation Angle Images[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 427-431.
    [10]ZHAO Hongrui, TANG Zhongshi, LI Xiaowen. A Regularization Parameter Choice Method on Nonlinear Ill-posed Quantitative Remote Sensing Inversion[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 577-580.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return