YAO Yibin, KONG Jian. A New Combined LS Method Considering Random Errors of Design Matrix[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1028-1032. DOI: 10.13203/j.whugis20130030
Citation: YAO Yibin, KONG Jian. A New Combined LS Method Considering Random Errors of Design Matrix[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1028-1032. DOI: 10.13203/j.whugis20130030

A New Combined LS Method Considering Random Errors of Design Matrix

Funds: The National Natural Science Foundation of China,Nos.41174012,41274022;the National 863Program of China,No.2013AA122502;the Ministry of Education Program for New Century Excellent Talents Project,NECT.-12-0428.
More Information
  • Author Bio:

    YAO Yibin,PhD,professor,specializes in surveying data processing.

  • Received Date: April 10, 2013
  • Revised Date: September 04, 2014
  • Published Date: September 04, 2014
  • Objective A new combined LS(CLS)method is proposed which considers the random error in a designmatrix after a brief introduction of TLS and its iteration algorithm and the SVD algorithm.The newalgorithm can be applied for TLS parameter estimation,so that TLS can be integrated with classicalLS in theory.By proposing rigorous accuracy assessment formulas for TLS under the new algorithm,this paper solves the bottleneck problem which restricts the application of TLS,and then shows thefeasibility and correctness of the new method through examples.The research results are meaningfulnot only for TLS theory,but also for the whole data processing theory.
  • [1]
    van Loan G C.An Analysis of the Total Least-Squares Problem[J].SIAM J Numer Anal,1980,17:883-893[2] Yu Jincheng.On the Solvability of the Total LeastSquares Problem[J].Journal of Nanjng NormalUniversity(Nature Science),1996,19(1):13-16(俞锦成.关于整体最小二乘问题的可解性[J].南京师大学报(自然科学版),1996,19(1):13-16)[3] Kong Jian,Yao Yibin,Wu Han.Iterative Methodfor Total Least-Squares[J].Geomatics and Infor-mation Science of Wuhan University,2010,35(6):711-714(孔建,姚宜斌,吴寒.整体最小二乘的迭代解法[J].武 汉 大 学 学 报 · 信 息 科 学 版,2010,35(6):711-714)[4] van Huffel S,Zha Hongyuan.The Total LeastSquares Problem[J]. Handbook of Statistics,1993,9:377-407[5] Hu Shengwu,Tao Benzao.Nonlinear Error Propa-gation and Its Application in GIS[J].Journal ofWuhan Technical University of Surveying and1031武 汉 大 学 学 报 · 信 息 科 学 版2014年9月Mapping,1997,22(2):129-131(胡圣武,陶本藻.非线性模型的误差传播及其在GIS中的应用[J].武汉测绘科技大学学报,1997,22(2):129-131)[6] Qiu Weining,Tao Benzao,Yao Yibin.The Theoryand Method of Surveying Data Processing[M].Wu-han:Wuhan University Press,2008(邱卫宁,陶 本藻,姚宜斌,等.测量数据处理理论与方法[M].武汉:武汉大学出版社,2008)[7] Burkhard S.Total Least-Sqares(TLS)for GeodeticStraight-Line and Plane Adjustment[J].Anno lxvBollettino Di Geodesiae Scienze Affinin,2006,65(3):141-166[8] Krystek M,Anton M.A Weighted Total Least-Squares Algorithm for Fitting a Straight Line[J].Meas Sci Technol,2007,18:3438-3442[9] Ding Keliang,Ou Jikun,Zhao Chunmei.Mthod ofLeast-Squares Prthogonal Curve Fitting[J].Scienceof Surveying and Mapping,2007,32(3):17-19(丁克良,欧吉坤,赵春梅.正交最小二乘曲线拟合法[J].测绘科学,2007,32(3):17-19)[10]Akyilmaz O.Total Least Squares Solution of Coor-dinate Transformation[J].Survey Review,2007(1):68-80[11]Neri F,Saitta G,Chiofalo S.An Accurate andStraightforward Approach to Line Regression Anal-ysis of Error-Affected Experimental Data[J].JPhys E:Sci Instrum,1989,22:215-217[12]Mahboub V.On Weighted Total Least-Squares forGeodetic Transformations[J].J Geod,2011,DOI: 10.1007/s00190-011-0524-5

Catalog

    Article views (1306) PDF downloads (704) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return