LIN Dongfang, ZHU Jianjun. Improved Ridge Estimation with Singular Value Correction Constraints[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1834-1839. DOI: 10.13203/j.whugis20150581
Citation: LIN Dongfang, ZHU Jianjun. Improved Ridge Estimation with Singular Value Correction Constraints[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1834-1839. DOI: 10.13203/j.whugis20150581

Improved Ridge Estimation with Singular Value Correction Constraints

Funds: 

The National Natural Science Foundation of China 41531068,

The National Natural Science Foundation of China 41474008

the National Basic Research Program of China 2013CB733303

More Information
  • Author Bio:

    LIN Dongfang, PhD candidate, specializes in surveying adjustment and data processing. E-mail: lindongfang223@163.com

  • Corresponding author:

    ZHU Jianjun, PhD, professor. E-mail: zjj@csu.edu.cn

  • Received Date: July 14, 2016
  • Published Date: December 04, 2017
  • It is well known that ridge estimation is better than least squares estimation for ill posed problems, however the least squares estimation is unbiased compare to ridge estimation which is biased. Actually, ridge estimation reduces the variance by introducing bias so as to improve the MSE (mean square error). Therefore, ridge estimation is better than least squares estimation in term of MSE. Since the MSE is composed of variance and bias, the performance of the ridge estimation can be shown clearly through computing the variance and bias. Through analyzing the changes of variance and bias of ridge estimation, we know that ridge estimation correct the singular values of the ill posed matrix to reduce the variance and introduce the bias. When the reduced variance is much more than the introduced bias, the MSE can be reduced. However, ridge estimation correct all the singular values in the ill-conditioned matrix. Correcting the big singular values cannot reduce the variance of the estimation effectively but introduce much bias into the estimation. In view of this, improved ridge estimation is proposed in this paper to constrain the correction of the singular values. The new ridge estimation only correct the small singular values which are determined by comparing the variance reduction with bias introduction of singular value correction. Theoretical analysis clearly shows the feasibility of the improved ridge estimation. The experiment on the basis of the Fredholm integral equation of the first kind is carried out to demonstrate the effectiveness of the new ridge estimation. The results show that the improved ridge estimation performs much better than ridge estimation in stability and accuracy.
  • [1]
    杨文采.用于位场数据处理的广义反演技术[J].地球物理学报, 1986, 29(3):283-291 http://www.oalib.com/paper/4867708

    Yang Wencai. A Generalized Inversion Technique for Potential Field Data Processing[J]. Acta Geophysica Sinica, 1986, 29(3):283-291 http://www.oalib.com/paper/4867708
    [2]
    Xu C, Deng C F. Solving Multicollinearity in Dam Regression Model Using TSVD[J].Geo-Spatial Information Science, 2011, 14(3):230-234 doi: 10.1007/s11806-011-0527-7
    [3]
    Dai W J, Liu B, Ding X L, et al. Modeling Dam Deformation Using Independent Component Regression Method[J]. Transactions of Nonferrous Metals Society of China, 2013, 23:2194-2200 doi: 10.1016/S1003-6326(13)62717-X
    [4]
    Himanshu S, Srinivas B, Byron D T. Reducing Errors in the GRACE Gravity Solutions Using Regularization[J]. Journal of Geodesy, 2012, 86:695-711 doi: 10.1007/s00190-012-0548-5
    [5]
    崔希璋, 於倧俦, 陶本藻.广义测量平差[M].武汉:武汉测绘科技大学出版社, 2001

    Cui Xizhang, Yu Zongchou, Tao Benzao. Generalized Surveying Adjustment[M]. Wuhan:Wuhan Technical University of Surveying and Mapping Press, 2001
    [6]
    Hoerl A E, Kennard R W. Ridge Regression Biased Estimation for Non-orthogonal Problems[J]. Technimetrics, 1970, 12:55-58 doi: 10.1080/00401706.1970.10488634
    [7]
    徐天河, 杨元喜.均方误差意义下正则化解优于最小二乘解的条件[J].武汉大学学报·信息科学版, 2004, 29(3):223-226 http://ch.whu.edu.cn/CN/abstract/abstract4633.shtml

    Xu Tianhe, Yang Yuanxi. Condition of Regularization Solution Superior to LS Solution Based on MSE Principle[J]. Geomatics and Information Science of Wuhan University, 2004, 29(3):223-226 http://ch.whu.edu.cn/CN/abstract/abstract4633.shtml
    [8]
    Shen Y Z, Xu P L, Li B F. Bias-Corrected Regularized Solution to Inverse Ill-Posed Models[J]. Journal of Geodesy, 2012, 86:597-608 doi: 10.1007/s00190-012-0542-y
    [9]
    朱建军.岭估计的一种新的算法[J].测绘信息与工程, 1997, 3:22-25 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxg199703005&dbname=CJFD&dbcode=CJFQ

    Zhu Jianjun, A New Algorithm for Ridge Estimate[J]. Journal of Geomatics, 1997, 3:22-25 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxg199703005&dbname=CJFD&dbcode=CJFQ
    [10]
    Golub G H, Heath M, Wahba G. Generalized Gross-Validation as a Method for Choosing a Good Ridge Parameter[J]. Technometrics, 1979, 21, 215-223 doi: 10.1080/00401706.1979.10489751
    [11]
    Hansen P C. The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems[J]. SIAM J. Sci. Comput, 1993, 14(6):1487-1503 doi: 10.1137/0914086
    [12]
    朱建军, 田玉淼, 陶肖静.带准则参数的平差准则及其统一与解算[J].测绘学报, 2012, 41(1):8-13 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb201201004&dbname=CJFD&dbcode=CJFQ

    Zhu Jianjun, Tian Yumiao, Tao Xiaojing. United Expression and Solution of Adjustment Criteria with Parameters[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(1):8-13 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb201201004&dbname=CJFD&dbcode=CJFQ
    [13]
    叶松林, 朱建军.矩阵奇异值分解与广义岭估计及其在测量中的应用[J].中国有色金属学报, 1998, 8(1):163-167 http://www.doc88.com/p-007903886532.html

    Ye Songlin, Zhu Jianjun. Application of Singular Value Decomposition and Generalized Ridge Estimation Insurveying[J]. The Chinese Journal of Nonferrous Metals, 1998, 8(1):163-167 http://www.doc88.com/p-007903886532.html
    [14]
    Xu P L, Shen Y Z, Fukuda Y, et al. Variance Component Estimation in Linear Inverse Ill-Posed Models[J]. Journal of Geodesy, 2006, 80:69-81 doi: 10.1007/s00190-006-0032-1
  • Related Articles

    [1]YAO Yibin, RAN Qishun, ZHANG Bao. Application of Improved Heuristic Segmentation Algorithm to Step Detection of GNSS Coordinate Time Series[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 648-654. DOI: 10.13203/j.whugis20170322
    [2]SHEN Xin, LIU Yulin, LI Shixue, YAO Huang. An Optimization Design Method for High Temporal Resolution Remote Sensing Satellite Constellation Based on Improved PSO Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1986-1993. DOI: 10.13203/j.whugis20180160
    [3]Zhan Weiwei, Wang Wei, Chen Nengcheng, Wang Chao. Path Planning Strategies for UAV Based on Improved A*Algorithm[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 315-320.
    [4]ZHA Feng, XU Jiangning, LI Jingshu, HE Hongyang. Improvement of a Series of Fuzzy Damp Algorithms in SINS[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 705-709.
    [5]ZHAN Jianfeng, FAN Chong, LI Tao. A Forest Firespot Automatic Detection Algorithm for HJ-IRS Imagery[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1321-1324.
    [6]LUO Zhicai, LIN Xu, ZHOU Boyang. Improved Algorithm of Autocovariance Least-Squares Noise Estimation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10): 1164-1167.
    [7]LI Zhenhai, LUO Zhicai, WANG Haihong, LI Qiong. Visualization of Gravity Vector Field Using Improved FLIC Algorithm[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 276-279.
    [8]YIN Shuling, SHU Ning, LIU Xinhua. Classification of Remote Sensing Image Based on Adaptive GA and Improved BP Algorithm[J]. Geomatics and Information Science of Wuhan University, 2007, 32(3): 201-204.
    [9]YAO Huanmei, HUANG Rentao, GAN Fuxing, LIU Yang. Principal Component Analysis of the Water Quality Evaluation in East Lake[J]. Geomatics and Information Science of Wuhan University, 2005, 30(8): 732-735.
    [10]CHEN Jiangping, FU Zhongliang, XU Zhihong. An Improved Algorithm of Apriori[J]. Geomatics and Information Science of Wuhan University, 2003, 28(1): 94-99.
  • Cited by

    Periodical cited type(3)

    1. 袁东,张健,余洋洋,张志良. 差异特征注意力引导的偏振图像高光移除. 光学技术. 2024(02): 247-256 .
    2. 陈毅夫,何敬,刘刚,毛佳琪. 融合Swin-Transformer网络模型的水体高光区域提取. 遥感信息. 2023(04): 129-136 .
    3. 乔玉晶,张思远,赵宇航. 高光弱纹理物体表面鲁棒重建方法. 光子学报. 2019(12): 172-182 .

    Other cited types(2)

Catalog

    Article views (1403) PDF downloads (330) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return