XU Jian, CHANG Zhiguo, ZHANG Xiaodan. Image Super-resolution Based on Alternate K-Singular Value Decomposition[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1137-1143. DOI: 10.13203/j.whugis20150095
Citation: XU Jian, CHANG Zhiguo, ZHANG Xiaodan. Image Super-resolution Based on Alternate K-Singular Value Decomposition[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1137-1143. DOI: 10.13203/j.whugis20150095

Image Super-resolution Based on Alternate K-Singular Value Decomposition

Funds: 

The National Natural Science Foundation of China 61601362

The National Natural Science Foundation of China 61571361

The National Natural Science Foundation of China 61671377

The National Natural Science Foundation of China 41504115

Shaanxi International Cooperation and Exchange Plan 2015KW-005

More Information
  • Author Bio:

    XU Jian, PhD, associated professor, specializes in image super-resolution. E-mail: xujian_paper@163.com

  • Corresponding author:

    CHANG Zhiguo, PhD, associated professor. E-mail: chang-zg@126.com

  • Received Date: August 17, 2016
  • Published Date: August 04, 2017
  • The coupled dictionary training algorithm in super-resolution based on sparse representation are directly related to the detail recovery capability of the algorithm, but the existing algorithm makes the dictionaries lack texture structure information. This paper proposes an alternate K-singular value decomposition dictionary training algorithm. This algorithm is composed of a training stage and a testing stage. In the training stage, the best low rank approximations of low and high frequency patches are used for the updating of the dictionaries. This method makes the sparse representations of low and high frequency patches becomes more and more similar with the increasing of the iteration number. In the testing stages, the high frequency details can be estimated by multiplying the sparse representations generated with low frequency patches with the high frequency dictionary. The experimental results demonstrate that the proposed algorithm can provide clearer resultant images. Compared with many existing methods, the average peak signal to noise ratio exceeds about 0.3dB and structure similarity exceeds about 0.1.
  • [1]
    魏士俨, 申振荣, 张烁, 等.月球车图像超分辨率重建算法[J].武汉大学学报·信息科学版, 2013, 38(4):436-439 http://ch.whu.edu.cn/CN/abstract/abstract765.shtml

    Wei Shiyan, Shen Zhenrong, Zhang Shuo, et al. Moon Rover Image Super-Resolution Reconstruction Algorithm[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4):436-439 http://ch.whu.edu.cn/CN/abstract/abstract765.shtml
    [2]
    Chen X, Qi C. Low-Rank Neighbor Embedding for Single Image Super-Resolution[J].IEEE Signal Processing Letters, 2014, 21(1):79-82 doi: 10.1109/LSP.2013.2286417
    [3]
    Zeyde R, Protter M, Elad M. On Single Image Scale-Up Using Sparse-Representation[J].Lecture Notes in Computer Science, 2010, 6920(1):711-730 http://wwwvm.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2010/CS/CS-2010-12.pdf
    [4]
    Peleg T, Elad M. A Statistical Prediction Model Based on Sparse Representations for Single Image Super-Resolution[J].IEEE Transactions on Image Processing, 2014, 23(6):2569-2582 doi: 10.1109/TIP.2014.2305844
    [5]
    Purkait P, Pal N R, Chanda B. A Fuzzy-Rule-Based Approach for Single Frame Super Resolution[J].IEEE Transactions on Image Processing, 2014, 23(5):2277-2290 doi: 10.1109/TIP.2014.2312289
    [6]
    Yang J, Wang Z, Lin Z, et al. Coupled Dictionary Training for Image Super-resolution[J]. IEEE Transactions on Image Processing, 2012, 21(8):3467-3478 doi: 10.1109/TIP.2012.2192127
    [7]
    Wang S, Zhang L, Liang Y, et al. Semi-Coupled-Dictionary Learning with Applications to Image Super-resolution and Photo-Sketch Synthesis[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012
    [8]
    He Li, Qi Hairong, Zaretzki R. Beta Process Joint Dictionary Learning for Coupled Feature Spaces with Application to Single Image Super-resolution[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, Oregon, USA, 2013
    [9]
    Timofte R, De Smet V, Van Gool L. A+:Adjusted Anchored Neighborhood Regression for Fast Super-Resolution[C].Asian Conference of Computer Vision, Singapore City, Singapore, 2014
    [10]
    Glasner D, Bagon S, Irani M. Super-resolution from a Single Image[C]. IEEE International Conference on Computer Vision, Kyoto, Japan, 2009
    [11]
    Zhang K, Gao X, Tao D, et al. Single Image Super-resolution with Multiscale Similarity Learning[J].IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(10):1648-1659 doi: 10.1109/TNNLS.2013.2262001
    [12]
    Irani M, Peleg S. Improving Resolution by Image Registration[J]. CVGIP:Graphical Models and Image Processing, 1991, 53(3):231-239 doi: 10.1016/1049-9652(91)90045-L
    [13]
    Marquina A, Osher S J. Image Super-resolution by TV-Regularization and Bregman Iteration[J]. Journal of Scientific Computing, 2008, 37(3):367-382 doi: 10.1007/s10915-008-9214-8
    [14]
    刘帅, 朱亚杰, 薛磊.一种结合稀疏表示和纹理分块的遥感影像超分辨率方法[J].武汉大学学报·信息科学版, 2015, 40(5):578-582 http://ch.whu.edu.cn/CN/abstract/abstract3248.shtml

    Liu Shuai, Zhu Yajie, Xue Lei. Remote Sensing Image Super-resolution Method Using Sparse Representation and Classified Texture Patches[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5):578-582 http://ch.whu.edu.cn/CN/abstract/abstract3248.shtml
    [15]
    Yang J, Wang Z, Lin Z, et al. Coupled Dictionary Training for Image Super-resolution[J]. IEEE Transactions on Image Processing, 2012, 21(8):3467-3478 doi: 10.1109/TIP.2012.2192127
    [16]
    Aharon M, Elad M, Bruckstein A. K-SVD:An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322 doi: 10.1109/TSP.2006.881199
    [17]
    Tropp J A. Greed is Good:Algorithmic Results for Sparse Approximation[J].IEEE Transactions on Information Theory, 2006, 50(10):2231-2242 https://www.researchgate.net/publication/3085174_Greed_is_Good_Algorithmic_Results_for_Sparse_Approximation
    [18]
    张贤达.矩阵分析与应用[M].北京:清华大学出版社, 2004:350-351

    Zhang Xianda. Matrix Analysis and Applications[M]. Beijing:Tsinghua University Press, 2004:350-351
    [19]
    Gao X, Zhang K, Tao D, et al. Image Super-resolution with Sparse Neighbor Embedding[J]. IEEE Transactions on Image Processing, 2012, 21(7):3194-3205 doi: 10.1109/TIP.2012.2190080
    [20]
    Zhang K, Gao X, Tao D, et al. Single Image Super-resolution With Non-Local Means and Steering Kernel Regression[J].IEEE Transactions on Image Processing, 2012, 21(11):4544-4556 doi: 10.1109/TIP.2012.2208977
    [21]
    Dong W, Zhang L, Shi G, et al. Nonlocally Centralized Sparse Representation for Image Restoration[J].IEEE Transactions on Image Processing, 2013, 22(4):1620-1630 doi: 10.1109/TIP.2012.2235847
    [22]
    Dong W, Zhang L, Shi G, et al. Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization[J]. IEEE Transactions on Image Processing, 2011, 20(7):1838-1857 doi: 10.1109/TIP.2011.2108306
    [23]
    Wang Z, Bovik A C, Sheikh H R, et al. Image Quality Assessment:from Error Visibility to Structural Similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612 doi: 10.1109/TIP.2003.819861
    [24]
    Hou H, Andrews H. Cubic Splines for Image Interpolation and Digital Filtering[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1978, 26(6):508-517 doi: 10.1109/TASSP.1978.1163154
    [25]
    Yang J, Lin Z, Cohen S. Fast Image Super-resolution Based on In-place Example Regression[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 2013
    [26]
    Timofte R, De Smet V, Van Gool L. Anchored Neighborhood Regression for Fast Example-Based Super-resolution[C]. IEEE International Conference on Computer Vision, Portland, Oregon, USA, 2013
  • Related Articles

    [1]WANG Xiaolong, ZHANG Liming, YAN Haowen, LU Xiaomin. A Coordinate Encryption Algorithm for Vector Spatial Data Using Haar Transform and Gaussian Random Number[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1946-1955. DOI: 10.13203/j.whugis20200219
    [2]NI Haochen, WU Zhongjie, JIA Jian, XU Dibao, RUI Yikang, WANG Jiechen. A Gird Line Vectorization Method Based on Delaunay Triangulation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 184-189. DOI: 10.13203/j.whugis20140582
    [3]HU Wei, TAO Weidong, YUAN Zhenyu, WANG Jiechen. A Method of Vectorization of Scanning Map Based on Voronoi Diagrams[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 470-474.
    [4]HUANG Xionghua, WANG Hongxia, JIANG Weizhen, CUI Gengshen. An Adaptive Robust Audio Blind Watermarking Algorithm Using Dithering Quantization and SNR[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 121-125.
    [5]LI Fei, ZHOU Xiaoguang. A Self-intersecting Polygon Processing Algorithm in the Vectorization of Classified Raster Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 100-104.
    [6]WAN Xue. Generalized Point Photogrammetry Feature Extraction Based on Harris Operator and Vectorization[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 145-148.
    [7]ZHONG Heping, TANG Jinsong, ZHANG Sen, CHEN Ming. A Fast Phase Unwrapping Algorithm Based on Quantized Quality Map and Priority Queue[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 342-345.
    [8]ZHU Haijun, WU Huayi, LI Deren. DCT-Based GIS Vector Data Compression[J]. Geomatics and Information Science of Wuhan University, 2007, 32(12): 1123-1126.
    [9]Shen Weiming, Qiu Tong, Zeng Yong, Zhang Hua. Neural Network Based Vector Quantizer and Lossy Compressed Coding on Remotely Sensed Image[J]. Geomatics and Information Science of Wuhan University, 1996, 21(2): 124-127.
    [10]Yuan Guoliu. An Approach to the Design of the Vector Quantizer for Image Signals[J]. Geomatics and Information Science of Wuhan University, 1989, 14(1): 74-81.
  • Cited by

    Periodical cited type(5)

    1. 朱武松. 抗差Helmert分量估计在地铁CPⅢ控制网平差中的应用. 城市勘测. 2024(02): 133-136 .
    2. 王乐洋,孙坚强. 总体最小二乘回归预测模型的方差分量估计. 武汉大学学报(信息科学版). 2021(02): 280-288 .
    3. 王祝安,陈义,毛鹏宇. 加权整体最小二乘的验后估计在三维坐标转换中的应用. 大地测量与地球动力学. 2018(02): 216-220 .
    4. 王乐洋,李海燕,陈晓勇. 拟牛顿修正法解算不等式约束加权总体最小二乘问题. 武汉大学学报(信息科学版). 2018(01): 127-132 .
    5. 陶武勇,鲁铁定,许光煜,杨世安. 稳健总体最小二乘Helmert方差分量估计. 大地测量与地球动力学. 2017(11): 1193-1197 .

    Other cited types(6)

Catalog

    Article views (1747) PDF downloads (371) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return