YAO Na, LIN Zongjian, ZHANG Jingxiong, REN Chaofeng. Geostatistical Approaches to Post-classification of Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 15-18.
Citation: YAO Na, LIN Zongjian, ZHANG Jingxiong, REN Chaofeng. Geostatistical Approaches to Post-classification of Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 15-18.

Geostatistical Approaches to Post-classification of Remote Sensing Image

More Information
  • Received Date: November 19, 2012
  • Published Date: January 04, 2013
  • This paper explores two methods pertaining to geostatistics,i.e.,simple kriging with local mean and cokriging,to predict class occurrences based on training samples' indicator transforms(location and classes) and spectrally derived class probabilities,thus calibrating the a posterior class probability vectors derived from initial spectral classification.The results showed that classification accuracy is significantly increased by these two methods for utilizing spatial information contained in training samples and initial spectral classification,compared with those obtainable with spectral classification.Moreover,the proposed methods constitute a valuable strategy for making fuller use of information residing in training data for improving spectrally derived classification,which is independent of the specific classifiers initially adopted for image classification.
  • Related Articles

    [1]ZHANG Wangfei, WEN Zhe, ZHANG Yahong, ZHANG Tingwei, LI Yun. Feasibility Analysis of Stokes Related Parameters for Oilseed Rape Growth Monitoring[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 242-249. DOI: 10.13203/j.whugis20180375
    [2]LI Houpu, BIAN Shaofeng, JI Bing, CHEN Yongbing. Precise Calculation of Innermost Area Effects in Altimetry Gravity Based on the Inverse Vening-Meinesz Formula[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 200-205. DOI: 10.13203/j.whugis20150744
    [3]LIU Min, HUANG Motao, DENG Kailiang, OUYANG Yongzhong, ZHAI Guojun, WU Taiqi. Test and Analysis of Upward Continuation Models for Earth Surface Gravity with Regard to the Effect of Topographic Height[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 112-119. DOI: 10.13203/j.whugis20150519
    [4]Zhai Zhenhe, Wang Xingtao, Li Yingchun. Solution and Comparison of High Order Term of Analytical Continuation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 134-138.
    [5]CHU Yonghai, LI Jiancheng, CHAO Dingbo, FU Lu. The Application of Two Types of Modified Stokes's Kernels for Geoid Determination in the Coastal Areas of China Sea[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10): 1160-1163.
    [6]JIANG Tao, WANG Zhengtao, LI Dawei, FENG Hai. Fast Algorithm for the Discrete Summation of Stokes’ and Hotine’s Integral[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5): 606-609.
    [7]WAN Xiaoyun, YU Jinhai. Accuracy Analysis of the Remove-Restore Process in Inverse Stokes Formula[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 77-80.
    [8]WANG Rui, LI Houpu. Calculation of Innermost Area Effects in Altimetry Gravity Recovery Based on the Inverse Stokes Formula[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 467-471.
    [9]CHAO Dingbo. A Note on Stokes Formula in the Form of Spherical and Planar Convolution[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 651-654.
    [10]Wang Kunjie, Li Jianchen. An Effective Method of Eliminating the Approximation Errors in Stokes Integration Convolution Formula[J]. Geomatics and Information Science of Wuhan University, 1993, 18(4): 34-39.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return