UAN Xiuxiao, FU Jianhong, ZUO Zhengli, SUN Hongxing. Accuracy Analysis of Direct Georeferencing by Airborne Position and Orientation System in Aerial Photogrammetry[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 847-850.
Citation: UAN Xiuxiao, FU Jianhong, ZUO Zhengli, SUN Hongxing. Accuracy Analysis of Direct Georeferencing by Airborne Position and Orientation System in Aerial Photogrammetry[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 847-850.

Accuracy Analysis of Direct Georeferencing by Airborne Position and Orientation System in Aerial Photogrammetry

Funds: 高等学校全国优秀博士学位论文作者专项基金资助项目(200142);国家教育部新世纪优秀人才支持计划资助项目(NCET-04-0662)
More Information
  • Received Date: July 25, 2006
  • Revised Date: July 25, 2006
  • Published Date: October 04, 2006
  • The accuracy of direct georeferencing by airborne position and orientation system(POS) in WGS 84 coordinate system and in 80 Xi'an geodetic coordinate system is appraised,the height accuracy by using different geoid simulate methods is analyzed,the boresight angle errors of POS system are calibrated and the calibration results in different test fields are discussed.The empirical results have verified that direct georeferencing of aerial photogrammetry based on POS system requires a calibration field with at least 1 XYZ ground control point to eliminate system errors.The accuracy of direct georeferencing is very good in WGS 84 coordinate system.However,it is necessary for getting accurate 3D coordinates of the photogrammetric points to correct height by using geoid simulate in 80' geodetic coordinate system.
  • Related Articles

    [1]LIU Shuo, ZHANG Lei, LI Jian. A Modified Wide Lane Bootstrapping Ambiguity Resolution Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 637-642. DOI: 10.13203/j.whugis20150462
    [2]SHU Bao, LIU Hui, ZHANG Jinsheng, PAN Guofu, JIANG Jun. Performance Assessment of Partial Ambiguity Resolution Based on BDS/GPS Combined Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 989-994, 1001. DOI: 10.13203/j.whugis20150017
    [3]LIU Shuai, SUN Fuping, LI Haifeng, LIU Jing, HAO Wanliang. GLONASS Aided Ambiguity Fixing for Kinematic GPS PPP[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1238-1244. DOI: 10.13203/j.whugis20140494
    [4]ZHANG Liang, LV Hanfeng, WU Jie. Sin gle  Epoch Ambiguit y Resolution Success Rates Under Modified Objective  Function Without Prior Baseline Information[J]. Geomatics and Information Science of Wuhan University, 2014, 39(10): 1184-1188.
    [5]LIU Jingnan, DENG Chenlong, TANG Weiming. Review of GNSS Ambiguity Validation Theory[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1009-1016. DOI: 10.13203/j.whugis20140241
    [6]WU Yue, FU Xiaolin, LI Haijun, LIU Jingbin. Application of TCAR/MCAR Method in Different Baseline Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2): 172-175.
    [7]LI Deren, PENG Mingjun, . Transformation Between Urban Spatial Information Irregular Grid and Regular Grid[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2): 160-163.
    [8]WANG Xinzhou, HUA Xianghong, QIU Lei. A New Method for Integer Ambiguity Resolution in GPS Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 24-26.
    [9]REN Chao, OU Jikun, YUAN Yunbin. A New Method for GPS Ambiguity Resolution on-the-Fly Using Integer Whitening Filter Search[J]. Geomatics and Information Science of Wuhan University, 2004, 29(11): 960-963.
    [10]P. J. G. Teunissen. A New Class of GNSS Ambiguity Estimators[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 757-762.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return