LI Lun, WU Xiongbin, XU Xing'an, LIU Bin. An Empirical Model for Wind Speed Inversion by HFSWR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(9): 1096-1099.
Citation: LI Lun, WU Xiongbin, XU Xing'an, LIU Bin. An Empirical Model for Wind Speed Inversion by HFSWR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(9): 1096-1099.

An Empirical Model for Wind Speed Inversion by HFSWR

Funds: 国家863计划资助项目(2009AA09A301,2012AA091701);;国家自然科学基金资助项目(60571065);;中央高校基本科研业务费专项资金资助项目
More Information
  • Received Date: June 12, 2012
  • Published Date: September 04, 2012
  • An empirical model of ocean surface wind speed and significant wave height relation is proposed by analyzing data obtained by buoy in-situ observations at the coverage of radar beam.The model′s parameters are estimated by minimum standard Euclidean norm method from six months′ buoy in-situ measuring data and the estimation results show the model′s stability.The wind and wave model is applied to HFSWR OSMAR071′s wind speed inversion.Compared with four months′ buoy in-situ observation wind speed,the correlation coefficient is 0.6 and the RMSE is 2.7 m·s-1 which confirmes the model′s availability,which verifies the validation of the empirical wind speed inversion.
  • Related Articles

    [1]WANG Yu, YANG Liping, REN Jie, ZHANG Jing, KONG Jinling, HOU Chenglei. An Oasis Soil Moisture Inversion Model Using ALOS-2 and Landsat 8 Data[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1630-1638. DOI: 10.13203/j.whugis20220008
    [2]LI Pingxiang, LIU Zhiqu, YANG Jie, SUN Weidong, LI Minyi, REN Yexian. Soil Moisture Retrieval of Winter Wheat Fields Based on Random Forest Regression Using Quad-Polarimetric SAR Images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 405-412. DOI: 10.13203/j.whugis20160531
    [3]LIANG Yong, YANG Lei, WU Qiulan, HONG Xuebao, HAN Moutian, YANG Dongkai. Simulation of Soil Roughness Impact in GNSS-R Soil Moisture Retrieval[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1546-1552. DOI: 10.13203/j.whugis20160557
    [4]CHEN Tieqiao, LIU Jiahang, ZHU Feng, WANG Yihao, LIU Jia, CHEN Jie. A Novel Multi-radius Neighborhood Rough Set Weighted Feature Extraction Method for Remote Sensing Image Classification[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 311-317. DOI: 10.13203/j.whugis20150290
    [5]XU Feng, NIU Jiqiang, LI Zhuofan. Quantitative Evaluation Model of the Uncertainty of Multi-granularity Space Direction Relations Based on Rough-Set[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7): 971-976. DOI: 10.13203/j.whugis20130126
    [6]YU Fan, LI Haitao, ZHANG Chengming, WAN Zi, LIU Jiang, ZHAO Ying. A New Approach for Surface Soil Moisture Retrieving UsingTwo-polarized Microwave Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 225-228. DOI: 10.13203/j.whugis20120527
    [7]ZHANG Xianfeng, ZHAO Jiepeng. System for Soil Moisture Retrieval and Data Assimilation from Remotely Sensed Data in Arid Regions[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 794-799.
    [8]YU Liang, BIAN Fuling. Application of Rough Set-Based Neural Network in Forest Fire Alarm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(8): 720-723.
    [9]LI Dingfang, ZHANG Wen, NIU Yanqing. Rough Set Based Missing Data Rotative Reconstruction Algorithms[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 1016-1019.
    [10]Sun Lixin, Gao Wen. Hyperspectral Band Set Global Reduction Based on Rough Sets and Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 1999, 24(4): 306-311.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return