LIANG Yong, YANG Lei, WU Qiulan, HONG Xuebao, HAN Moutian, YANG Dongkai. Simulation of Soil Roughness Impact in GNSS-R Soil Moisture Retrieval[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1546-1552. DOI: 10.13203/j.whugis20160557
Citation: LIANG Yong, YANG Lei, WU Qiulan, HONG Xuebao, HAN Moutian, YANG Dongkai. Simulation of Soil Roughness Impact in GNSS-R Soil Moisture Retrieval[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1546-1552. DOI: 10.13203/j.whugis20160557

Simulation of Soil Roughness Impact in GNSS-R Soil Moisture Retrieval

Funds: 

The National Key Research and Development Plan in 13th Five-Year 2016YFC0803104

the National High-tech Research and Development Program(863 Program) of China 2013AA102301

Open Project of National Engineering Research Center for Information Technology in Agriculture KF2015W003

Grant of Beihang University BeiDou Technology Transformation and Industrialization BARI1709

More Information
  • Author Bio:

    LIANG Yong, PhD, professor, specializes in digital agriculture and remote sensing. E-mail:yongl@sdau.edu.cn

  • Corresponding author:

    YANG Lei, PhD, lecturer. E-mail: yanglei_sdau@163.com

  • Received Date: May 18, 2017
  • Published Date: October 04, 2018
  • This paper presents two dual antenna GNSS-R(global navigation satellite system reflectometry) soil moisture retrieval models with soil roughness compensation-an analytic model and an artificial neural network (ANN) model. Then a simulator for GNSS-R soil moisture retrieval is built in consideration of GPS L1 C/A code modulation. After that the impact of soil roughness is elaborated. The simulation results show that the roughness compensation is necessary for the analytic model when the RMSH(root mean square high) is larger than 0.010 m. The roughness compensation works well for small roughness, but there are some limitations for large roughness. Under the situation where RMSH is greater than 0.025 m, the accuracy of ANN model is 36.83%-72.36% higher than the analytic model without roughness compensation, and the accuracy of ANN model is 42.86%-54.40% higher than the analytic model with roughness compensation. The ANN model achieves similar accuracy regardless of roughness compensation, and the accuracy of ANN model without compensation is still 35.83%-53.48% higher than the analytic model with compensation.
  • [1]
    刘经南, 邵连军, 张训械. GNSS-R研究进展及其关键技术[J].武汉大学学报·信息科学版, 2007, 32(11):955-960 http://ch.whu.edu.cn/CN/abstract/abstract2030.shtml

    Liu Jingnan, Shao Lianjun, Zhang Xunxie. Advances in GNSS-R Studies and Key Technologies[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11):955-960 http://ch.whu.edu.cn/CN/abstract/abstract2030.shtml
    [2]
    王迎强, 严卫, 符养, 等.机载GPS反射信号土壤湿度测量技术[J].遥感学报, 2009, 13(4):670-685 http://d.old.wanfangdata.com.cn/Periodical/ygxb200904010

    Wang Yingqiang, Yan Wei, Fu Yang, et al. Soil Moisture Determination of Reflected GPS Signals from Aircraft Platform[J].Journal of Remote Sensing, 2009, 13(4):670-685 http://d.old.wanfangdata.com.cn/Periodical/ygxb200904010
    [3]
    Martín-Neira M. A Passive Reflectometry and Interferometry System (PARIS):Application to Ocean Altimetry[J]. ESA Journal, 1993, 17:331-355 https://www.researchgate.net/publication/279897829_A_Passive_Reflectometry_and_Interferometry_System_PARIS_Application_to_ocean_altimetry
    [4]
    Masters D, Axelrad P, Katzberg S. Initial Results of Land-Reflected GPS Bistatic Radar Measurements in SMEX02[J]. Remote Sensing of Environment, 2004, 92(4):507-520 doi: 10.1016/j.rse.2004.05.016
    [5]
    万玮.GNSS-R土壤水分估算方法研究[D].北京: 北京大学, 2014

    Wan Wei.Soil Moisture Content Estimation Using GNSS-R Technology[D]. Beijing: Peking University, 2014
    [6]
    邹文博, 张波, 洪学宝, 等.利用北斗GEO卫星反射信号反演土壤湿度[J].测绘学报, 2016, 45(2):199-204 http://d.old.wanfangdata.com.cn/Periodical/chxb201602012

    Zou Wenbo, Zhang Bo, Hong Xuebao, et al. Soil Moisture Retrieval Using Reflected Signals of BeiDou GEO Satellites[J]. Acta Geodatica et Cartographica Sinica, 2016, 45(2):199-204 http://d.old.wanfangdata.com.cn/Periodical/chxb201602012
    [7]
    Motte E, Zribi M, Fanise P, et al. GLORI:A GNSS-R Dual Polarization Airborne Instrument for Land Surface Monitoring[J]. Sensors, 2016, 16(5):732 doi: 10.3390/s16050732
    [8]
    Rodriguez-Alvarez N, Bosch-Lluis X, Camps A, et al. Soil Moisture Retrieval Using GNSS-R Techniques:Experimental Results over a Bare Soil Field[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11):3616-3624 doi: 10.1109/TGRS.2009.2030672
    [9]
    Larson K M, Small E E, Gutmannn E D, et al. Use of GPS Receivers as a Soil Moisture Network for Water Cycle Studies[J]. Geographical Research Letters, 2008, 35:L24405 doi: 10.1029/2008GL036013
    [10]
    Chew C C, Small E E, Larson K M, et al. Effects of Near-Surface Soil Moisture on GPS SNR Data:Development of a Retrieval Algorithm for Soil Moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1):537-543 doi: 10.1109/TGRS.2013.2242332
    [11]
    Choudhury B J, Schmugge T J, Chang A, et al. Effect of Surface Roughness on the Microwave Emission from Soil[J]. Journal of Geophysical Research Atmospheres, 1979, 84(C9):5699-5706 doi: 10.1029/JC084iC09p05699
    [12]
    Egido A, Ruffini G, Caparrini M, et al. Soil Moisture Monitorization Using GNSS Reflected Signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 42(2):220-231 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0805.1881
    [13]
    Egido A. GNSS Reflectometry for Land Remote Sensing Applications[D]. Barcelona: Starlab, 2013
    [14]
    杨东凯, 张其善.GNSS反射信号处理基础与实践[M].北京:电子工业出版社, 2012

    Yang Dongkai, Zhang Qishan. GNSS Reflected Signal Processing:Fundamentals and Applications[M]. Beijing:Publishing House of Electronics Industry, 2012
    [15]
    邹文博.BD-R土壤湿度反演模型研究与植被影响修正[D].北京: 北京航空航天大学, 2016

    Zou Wenbo. Soil Moisture Retrieval Using BD-R for Bare and Vegetation-covered Fields[D]. Beijing: Behang University, 2016
    [16]
    李伟强, 杨东凯, 李明里, 等.面向遥感的GNSS反射信号接收处理系统及实验[J].武汉大学学报·信息科学版, 2011, 36(10):1204-1208 http://ch.whu.edu.cn/CN/Y2011/V36/I10/1204

    Li Weiqiang, Yang Dongkai, Li Mingli, et al. Design and Experiments of GNSS-R Receiver System for Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10):1204-1208 http://ch.whu.edu.cn/CN/Y2011/V36/I10/1204
    [17]
    Wang J, Schmugge T. An Empirical Model for the Complex Dielectric Permittivity of Soils as a Function of Water Content[J]. IEEE Transactions on Geoscience and Remote Sensing, 1980, GE-18(4):288-295 doi: 10.1109/TGRS.1980.350304
    [18]
    杜今阳.多极化雷达反演植被覆盖地表土壤水分研究[D].北京: 中国科学院遥感应用研究所, 2006

    Du Jinyang. Study of Vegetated Soil Moisture Inversion Using Multi Polarization Radar[D].Beijing: Institute of Remote Sensing Applications, Chinese Academy of Sciences, 2006
    [19]
    Haupt S E, Pasini A, Marzban C. Artificial Intelligence Methods in the Environmental Sciences[M]. Netherlands:Springer, 2009
    [20]
    杨磊, 吴秋兰, 张波, 等. SVRM辅助的北斗GEO卫星反射信号土壤湿度反演方法[J].北京航空航天大学学报, 2016, 42(6):1134-1141 http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201606006

    Yang Lei, Wu Qiulan, Zhang Bo, et al. SVRM-assisted Soil Moisture Retrieval Method Using Reflected Signal from BeiDou GEO Satellite[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6):1134-1141 http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201606006
    [21]
    Bishop C M. Pattern Recognition and Machine Learning[M]. New York:Springer, 2006
  • Related Articles

    [1]ZHONG Heping, TANG Jinsong, MA Mengbo, WU Haoran. Complex Image Registration Algorithm and Its Optimization for Interferometric Synthetic Aperture Sonar in Shared Memory Environment[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1169-1173. DOI: 10.13203/j.whugis20180051
    [2]WANG Hongyan, GUAN Xuefeng, WU Huayi. A Collaborative Parallel Spatial Interpolation Algorithmon Oriented Towards the Heterogeneous CPU/GPU System[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1688-1695. DOI: 10.13203/j.whugis20150361
    [3]ZHONG Heping, ZHANG Sen, TIAN Zhen, TANG Jinsong. A Fast Quality-guided Phase Unwrapping Algorithmin Heterogeneous Environment[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 756-760. DOI: 10.13203/j.whugis20130518
    [4]ZHU Jianfeng, CHEN Min. Supply Chain Knowledge Collaboration Based on Ontologyin Semantic Heterogeneous Environment[J]. Geomatics and Information Science of Wuhan University, 2014, 39(1): 123-126.
    [5]CHEN Jing, XIANG Longgang, ZHU Xinyan. Integrated Management of Distributed Heterogeneous Raster Spatial Data[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9): 1094-1096.
    [6]FU Xiaojing, ZHANG Guoyin, MA Chunguang. An Identity-based Authenticated Key Agreement Sheme for Heterogeneous Sensor Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(5): 582-586.
    [7]MA Chunguang, CHU Zhenjiang, WANG Jiuru, WANG Huiqiang. A Framework for Key Management in Heterogeneous Sensor Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(5): 509-511.
    [8]SHA Zongyao, LI Xiaolei. Algorithm of Mining Spatial Association Data Under Spatially Heterogeneous Environment[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1480-1484.
    [9]WU Mengquan, SONG Xiaodong, CUI Weihong. On Ontology-Driven Heterogeneous Geographic Data Set Integration[J]. Geomatics and Information Science of Wuhan University, 2007, 32(10): 915-918.
    [10]Li Yong. Research of Process Real-time Communication Based on Heterogeneous Networks[J]. Geomatics and Information Science of Wuhan University, 1999, 24(4): 362-366.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return