LI Pingxiang, LIU Zhiqu, YANG Jie, SUN Weidong, LI Minyi, REN Yexian. Soil Moisture Retrieval of Winter Wheat Fields Based on Random Forest Regression Using Quad-Polarimetric SAR Images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 405-412. DOI: 10.13203/j.whugis20160531
Citation: LI Pingxiang, LIU Zhiqu, YANG Jie, SUN Weidong, LI Minyi, REN Yexian. Soil Moisture Retrieval of Winter Wheat Fields Based on Random Forest Regression Using Quad-Polarimetric SAR Images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 405-412. DOI: 10.13203/j.whugis20160531

Soil Moisture Retrieval of Winter Wheat Fields Based on Random Forest Regression Using Quad-Polarimetric SAR Images

Funds: 

The National Natural Science Foundation of China 41771377

The National Natural Science Foundation of China 41601355

The National Natural Science Foundation of China 91438203

The National Natural Science Foundation of China 41501382

the GF Satellite Program from State Administration of Science, Technology and Industry for National Defense of China 03-Y20A10-9001-15/16

More Information
  • Author Bio:

    LI Pingxiang, professor, specializes in the theories and methods of polarimetric SAR. E-mail: pxli@whu.edu.cn

  • Corresponding author:

    LIU Zhiqu, PhD candidate. E-mail:meloqu@qq.com

  • Received Date: March 05, 2018
  • Published Date: March 04, 2019
  • Soil moisture has great significance in the researches of hydrology, meteorology and agriculture yield estimation. The quad-polarimetric SAR images can provide a lot of polarimetric features, the significance of the features in surface parameter retrieval have attracted attentions in previous researches with no final conclusions because of the complexity of terrain scattering. In this paper, random forest regression (RFR) is used for both soil moisture retrieval and the importance evaluation of polarimetric features of Radarsat-2 images in winter wheat fields. According to the score of importance, feature selection and combination are done for modelling. We evaluate the retrieval accuracy of models with different feature combinations. The results show that models of important features selected by RFR have RMSE(root mean square error) less than 6% which are better results compared to traditional models; when compared with support vector regression and artifical neural networks, the RFR also shows best retrieval accuracies, which proves that RFR is suitable for soil moisture retrieval and feature selection. The high retrieval accuracies of LBC-CPD(linear backscatter coefficients-Cloude-Pottier decomposition) and LBC-CPR(linear backscatter coefficients-circular polarimetric ratio) indicates these features can improve the retrieval accuracy of soil moisture.
  • [1]
    任鑫.多极化多角度SAR土壤水分反演算法研究[D].北京: 中国科学院遥感应用研究所, 2003

    Ren Xin. A Surface Moisture Inversion Teclmique Using Multi-Polarization and Multi-Angle Radar Images[D]. Beijing: Institute of Remote Sensing Application, Chinese Academy of Sciences, 2003
    [2]
    魏小兰, 李震, 陈权. S波段雷达数据反演土壤水分的模拟分析和验证[J].地球信息科学学报, 2008, 10(1):97-101 doi: 10.3969/j.issn.1560-8999.2008.01.016

    Wei Xiaolan, Li Zhen, Chen Quan. The Simulation Analysis and Validation of Soil Moisture Retrieval Using S-band Radar[J]. Geo-information Science, 2008, 10(1):97-101 doi: 10.3969/j.issn.1560-8999.2008.01.016
    [3]
    Bourgeau-Chavez L L, Leblon B, Charbonneau F, et al. Evaluation of Polarimetric Radarsat-2 SAR Data for Development of Soil Moisture Retrieval Algorithms over a Chronosequence of Black Spruce Boreal Forests[J]. Remote Sensing of Environment, 2013, 132(1):71-85 http://www.sciencedirect.com/science/article/pii/S0034425713000187
    [4]
    Wiseman G, McNairn H, Homayouni S, et al. Radarsat-2 Polarimetric SAR Response to Crop Biomass for Agricultural Production Monitoring[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(11):4461-4471 doi: 10.1109/JSTARS.2014.2322311
    [5]
    Adams J R, Berg A A, McNairn H, et al. Sensitivity of C-band SAR Polarimetric Variables to Unvegetated Agricultural Fields[J]. Canadian Journal of Remote Sensing, 2013, 39(1):1-16 doi: 10.5589/m13-003
    [6]
    Baghdadi N, Dubois-Fernandez P, Dupuis X, et al. Sensitivity of Main Polarimetric Parameters of Multifrequency Polarimetric SAR Data to Soil Moisture and Surface Roughness over Bare Agricultural Soils[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4):731-735 doi: 10.1109/LGRS.2012.2220333
    [7]
    Cloude S R, Pottier E. An Entropy Classification Scheme for Land Applications of Polarimetric SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35:68-78 doi: 10.1109/36.551935
    [8]
    Notarnicola C, Angiulli M, Posa F. Soil Moisture Retrieval from Remotely Sensed Data:Neural Network Approach Versus Bayesian Method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(2):547-557 doi: 10.1109/TGRS.2007.909951
    [9]
    Ahmad S, Kalra A, Stephen H. Estimating Soil Moisture Using Remote Sensing Data:A Machine Learning Approach[J]. Advances in Water Resources, 2010, 33(1):69-80 doi: 10.1016/j.advwatres.2009.10.008
    [10]
    Breiman L. Random Forest[J]. Machine Learning, 2001, 45(1):5-32 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201505028
    [11]
    Baghdadi N, Cresson R, El-Hajj M, et al. Estimation of Soil Parameters over Bare Agriculture Areas from C-band Polarimetric SAR Data Using Neural Networks[J]. Hydrology and Earth System Scien-ces, 2012, 16:1607-1621 doi: 10.5194/hess-16-1607-2012
    [12]
    Pasolli L, Notarnicola C, Bruzzone L, et al. Polarimetric Radarsat-2 Imagery for Soil Moisture Rtrieval in Alpine Areas[J]. Canadian Journal of Remote Sensing, 2011, 37:535-547 https://www.researchgate.net/publication/258489714_Polarimetric_RADARSAT2_imagery_for_soil_moisture_retrieval_in_Alpine_areas
    [13]
    Srivastava P K, Han D, Ramirez M R, et al. Machine Learning Techniques for Downscaling SMOS Satellite Soil Moisture Using MODIS Land Surface Temperature for Hydrological Application[J]. Water Resources Management, 2013, 27:3127-3144 doi: 10.1007/s11269-013-0337-9
    [14]
    Karjalainen M, Kankare V, Vastaranta M, et al. Prediction of Plot-Level Forest Variables Using TerraSAR-X Stereo SAR Data[J]. Remote Sensing of Environment, 2012, 117:338-347 doi: 10.1016/j.rse.2011.10.008
    [15]
    Baghdadi N, Cerden O, Zribi M, et al. Operational Performance of Current Synthetic Aperture Radar Sensors in Mapping Soil Surface Characteristics in Agricultural Environments:Application to Hydrological and Erosion Modelling[J]. Hydrological Processes, 2008, 22:9-20 doi: 10.1002/(ISSN)1099-1085
    [16]
    Yang Guijun, Shi Yuechan, Zhao Chunjiang, et al. Estimation of Soil Moisture from Multi-Polarized SAR Data over Wheat Coverage Areas[C]. The First International Conference on Agro-Geoinformatics, Shanghai, China, 2012
    [17]
    Freeman A, Durden S L. A Three-Component Scattering Model for Polarimetric SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3):963-973 doi: 10.1109/36.673687
    [18]
    Krogager E. A New Decomposition of the Radar Target Scattering Matrix[J]. Electronics Letter, 1990, 26(18):1525-1526 doi: 10.1049/el:19900979
    [19]
    Srivastava P, Han D, Ramirez M R, et al. Machine Learning Techniques for Downscaling SMOS Satellite Soil Moisture Using MODIS Land Surface Temperature for Hydrological Application[J]. Water Resource Management, 2013, 27:3127-3144 doi: 10.1007/s11269-013-0337-9
    [20]
    Shataee S, Kalbi S, Fallah A, et al. Forest Attri-bute Imputation Using Machine-Learning Methods and ASTER Data:Comparison of K-NN, SVR and Random Forest Regression Algorithms[J]. International Journal of Remote Sensing, 2012, 33:6254-6280 doi: 10.1080/01431161.2012.682661
  • Cited by

    Periodical cited type(17)

    1. 彭继达,张春桂. 基于PCA-RF组合模型的福建省空气负氧离子浓度预测研究. 能源与环保. 2024(01): 17-24 .
    2. 张成才,王蕊,侯佳彤,姜明梁,祝星星. 基于特征变量筛选的无人机多光谱遥感土壤含水量反演. 中国农村水利水电. 2024(05): 147-154 .
    3. 王宇,杨丽萍,任杰,张静,孔金玲,侯成磊. 联合ALOS-2和Landsat 8的绿洲土壤水分反演模型研究. 武汉大学学报(信息科学版). 2024(09): 1630-1638 .
    4. 薛智暄,张丽,王新军,李永康,张冠宏,李沛尧. 古尔班通古特沙漠SMAP土壤水分产品降尺度分析. 干旱区研究. 2023(04): 583-593 .
    5. 艾小童. 基于ELM模型的极化SAR土壤水分降尺度研究. 地理空间信息. 2023(07): 11-15 .
    6. 杨丽萍,王彤,苏志强,侯成磊,冯瑞. 随机森林反演绿洲土壤水分的特征参数优化降维方法. 西北大学学报(自然科学版). 2022(02): 181-191 .
    7. 王思楠,李瑞平,吴英杰,赵水霞,王秀青. 基于环境变量和机器学习的土壤水分反演模型研究. 农业机械学报. 2022(05): 332-341 .
    8. 杨丽萍,苏志强,侯成磊,白宇兴,王彤,孔金玲. 基于随机森林的干旱区全极化SAR土壤含水量反演. 吉林大学学报(地球科学版). 2022(04): 1255-1264 .
    9. 王斌,何丙辉,林娜,王伟,李天阳. 基于随机森林特征选择的茶园遥感提取. 吉林大学学报(工学版). 2022(07): 1719-1732 .
    10. 张双成,鲍琳,马中民,陈雪蓉,马红利,周昕. 多源哨兵数据解译农田区土壤湿度算法研究. 测绘科学. 2022(08): 94-104 .
    11. 杨丽萍,侯成磊,苏志强,白宇兴,王彤,冯瑞. 基于机器学习和全极化雷达数据的干旱区土壤湿度反演. 农业工程学报. 2021(13): 74-82 .
    12. 李向龙,赵洪丽,赵红莉,王镕,郝震. 极限学习机模型的土壤含水量反演研究. 测绘科学. 2021(12): 91-97 .
    13. 张王菲,文哲,张亚红,张庭苇,李云. Stokes参数在油菜长势监测中的可行性分析. 武汉大学学报(信息科学版). 2020(02): 242-249 .
    14. 黄赫,周勇,刘宇杰,肖梁,李可,段建设,魏洪亮. 基于多源环境变量和随机森林的农用地土壤重金属源解析——以襄阳市襄州区为例. 环境科学学报. 2020(12): 4548-4558 .
    15. 魏琪,林增刚,郭阳明,孔德岐,张双. 面向移动智能终端的人体心率监护系统设计与实现. 计算机测量与控制. 2019(11): 30-33+38 .
    16. 黄华国. 林业定量遥感研究进展和展望. 北京林业大学学报. 2019(12): 1-14 .
    17. 李文吉,姜德才,郑向向,宋艳茹,杨昭颖. 云贵高原典型地物L波段SAR散射特性分析——以昆明为例. 上海国土资源. 2019(04): 77-81 .

    Other cited types(30)

Catalog

    Article views (1944) PDF downloads (408) Cited by(47)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return